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Preface

The 11th IMA Conference on Cryptography and Coding was held at the Royal
Agricultural College, Cirencester, UK during December 18–20, 2007. As usual,
the venue provided a relaxed and convivial atmosphere for attendees to enjoy
the conference programme and discuss current and future research ideas.

The programme comprised three invited talks and 22 contributed papers. The
invited speakers were Jonathan Katz (University of Maryland, USA), Patrick
Solé (Ecole Polytechnique de l’Université de Nice-Sophia Antipolis, France) and
Whit Diffie (Sun Microsystems, USA). Special thanks are due to these speakers.
Two of the invited speakers provided papers, included in this volume, which high-
light the connections between cryptography, coding theory and discrete mathe-
matics.

The contributed talks were selected from 48 submissions. The accepted pa-
pers cover a range of topics in mathematics and computer science, including
symmetric and public key cryptography, Boolean functions, sequences, efficient
implementation and side-channel analysis.

I would like to thank all the people who helped with the conference pro-
gramme and organization. First, I thank the Steering Committee for their guid-
ance on the general format of the conference and for suggestions of members
of the Programme Committee. I also heartily thank the Programme Committee
and the sub-reviewers listed on the following pages for their thoroughness during
the review process. Each paper was reviewed by at least three people. There was
significant online discussion about a number of papers.

The submission and review process was greatly simplified by the ichair soft-
ware developed by Thomas Baignères and Matthieu Finiasz. Thanks also to Jon
Hart for running the submissions Web server and Sriram Srinivasan for designing
and maintaining the conference Web page.

Thanks go to the authors of all submitted papers. I also thank the authors
of accepted papers for revising their papers according to referee suggestions and
returning latex source files in good time. The revised versions were not checked by
the Programme Committee so authors bear full responsibility for their contents.
I thank the staff at Springer for their help with producing the proceedings.

I thank Hewlett-Packard and Vodafone for their sponsorship of this event.
Finally, I wish to thank the conference staff of the Institute for Mathematics

and its Applications, especially Lucy Nye and Sammi Lauesen, for their help
with running the conference and handling the finances.

October 2007 Steven Galbraith
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Patrick Solé Martijn Stam Søren Steffen Thomsen
Eran Tromer José Villegas
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Efficient Cryptographic Protocols Based on the

Hardness of Learning Parity with Noise

Jonathan Katz�

Dept. of Computer Science
University of Maryland
jkatz@cs.umd.edu

Abstract. The problem of learning parity with noise (The LPN prob-
lem), which can be re-cast as the problem of decoding a random linear
code, has attracted attention recently as a possible tool for developing
highly-efficient cryptographic primitives suitable for resource-constrained
devices such as RFID tags. This article surveys recent work aimed at de-
signing efficient authentication protocols based on the conjectured hard-
ness of this problem.

1 Introduction

1.1 The LPN Problem

Fix a binary vector (i.e., a bit-string) s of length k. Given a sequence of randomly-
chosen binary vectors a1, . . . ,a� along with the values of their inner-product
zi = 〈s,ai〉 with s, it is a simple matter to reconstruct s in its entirety as soon as
� is slightly larger than k. (All that is needed is to wait until the set {ai} contains
k linearly-independent vectors.) In the presence of noise, however, where each
bit zi is flipped (independently) with probability ε, determining s becomes much
more difficult. We refer to the problem of learning s in this latter case as the
problem of learning parity with noise, or the LPN problem.

Formally, let Berε be the Bernoulli distribution with parameter ε ∈ (0, 1
2 ) (so

if ν ∼ Berε then Pr[ν = 1] = ε and Pr[ν = 0] = 1 − ε), and let As,ε be the
distribution defined by:

{
a ← {0, 1}k; ν ← Berε : (a, 〈s, a〉 ⊕ ν)

}
.

Let As,ε also denote an oracle which outputs (independent) samples according
to this distribution. Algorithm M is said to (t, q, δ)-solve the LPNε problem if

Pr
[
s ← {0, 1}k : MAs,ε(1k) = s

]
≥ δ,

and furthermore M runs in time at most t and makes at most q queries to its
oracle. (This formulation of the LPN problem follows [18]; an alternative but
� Supported in part by NSF CyberTrust grant #0627306 and NSF CAREER award

#0447075.

S.D. Galbraith (Eds.): Cryptography and Coding 2007, LNCS 4887, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 J. Katz

essentially equivalent formulation allows M to output any s satisfying at least a
(1−ε) fraction of the equations returned by As,ε.) In asymptotic terms, the LPNε

problem is “hard” if every probabilistic polynomial-time algorithm M solves the
LPNε problem with only negligible probability (where the algorithm’s running
time and success probability are functions of k).

Note that ε is usually taken to be a fixed constant independent of k, as we will
assume here. The value of ε to use depends on a number of tradeoffs and design
decisions: although, roughly speaking, the LPNε problem becomes “harder” as
ε increases, a larger value of ε also affects the error rate (for honest parties) in
schemes based on the LPN problem; this will becomes more clear in the sections
that follow. For concreteness, the reader can think of ε ≈ 1

8 .
The hardness of the LPNε problem, for any constant ε ∈ (0, 1

2 ), has been
studied in many previous works. It can be formulated also as the problem of
decoding a random linear code, and is known to be NP-complete [2] as well as
hard to approximate within a factor better than 2 (where the optimization prob-
lem is phrased as finding an s satisfying the most equations) [12]. These worst-
case hardness results are complemented by numerous studies of the average-case
hardness of the problem [3,4,6,20,13,14,24]. Currently, the best algorithms for
solving the LPNε problem [4,9,23] require t, q = 2Θ(k/ log k) to achieve δ = O(1).
We refer the reader to [23] for additional heuristic improvements, as well as a
tabulation of the time required to solve the LPNε problem (for various settings
of the parameters) using the best-known algorithm.

The LPN problem can be generalized to fields other than F2 (or even other
algebraic structures such as rings), and these generalizations have interesting
cryptographic consequences also [24]. Such extensions will not be discussed here.

1.2 Cryptographic Applications of the LPN Problem

It is not too difficult to see that hardness of the LPNε problem implies the
existence of a one-way function. More interesting is that such hardness would
imply efficient and direct constructions of pseudorandom generators [3,24]; see
Lemma 1 for an indication of the basic underlying ideas. Furthermore, gener-
ating an instance of the distribution As,ε is extremely “cheap”, requiring only
k bit-wise “AND” operations and k − 1 “XOR” operations.1 Finally, as men-
tioned earlier, the best-known algorithms for solving the LPNε problem are only
slightly sub-exponential in the length k of the hidden vector. Taken together,
these observations suggest the possibility of using the LPNε problem to construct
efficient cryptographic primitives and protocols, as first suggested in [3].

Actually, if the LPNε problem is indeed “hard” enough, there is the potential
of using it to construct extremely efficient cryptographic primitives, suitable
either for implementation by humans (using pencil-and-paper) [13,14] or for
implementation on low-cost radio-frequency identification (RFID) tags [17] or
sensor nodes. Focusing on the case of RFID tags, Juels and Weis [17,25] estimate

1 This assumes that generating the appropriate random coins is “free”, which may not
be a reasonable assumption in practice.
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that current RFID tags contain, in the best case, ≈ 2000 gate equivalents that
can be dedicated to performing security functions; even optimized block cipher
implementations may require many more gates than this (see [8,1] for current
state-of-the-art).

1.3 Efficient Authentication Based on the LPN Problem

In the remainder of this work, we survey recent work directed toward developing
authentication protocols based on the LPN problem; these protocols have been
suggested as suitable for the secure identification of RFID tags. All protocols we
will consider are intended for the shared-key (i.e., symmetric-key) setting, and
provide unidirectional authentication only; typically, this would permit an RFID
tag, acting as a prover, to authenticate itself to a tag reader acting as a verifier.
We begin with a brief outline of the history of the developments, and defer all
technical details to the sections that follow.

The first protocol we will present — following [17], we will refer to it as the HB
protocol — was introduced by Hopper and Blum [13,14] and provides security
against a passive (eavesdropping) adversary. Juels and Weis [17,25] were the
first to rigorously prove security of the HB protocol, and to suggest its use for
RFID authentication. (Hopper and Blum proposed it as a way to authenticate
humans using pencil-and-paper only.) Juels and Weis also proposed a second
protocol, called HB+, that could be proven secure against an active attacker
who can impersonate the tag reader to an RFID tag. In each case, Juels and
Weis focus on a single, “basic authentication step” of the protocol and prove
that a computationally-bounded adversary cannot succeed in impersonating a
tag in this case with probability noticeably better than 1/2; that is, a single
iteration of the protocol has soundness error 1/2. The implicit assumption is
that repeating these “basic authentication steps” sufficiently-many times yields
a protocol with negligible soundness error, though this intuition was not formally
proven by Juels and Weis.

Two papers of my own [18,19] (along with Ji-Sun Shin and Adam Smith)
provide a simpler and improved analysis of the HB and HB+ protocols. Be-
sides giving what is arguably a cleaner framework for analyzing the security
of these protocols, the proofs in these works also yield the following concrete
improvements: (1) they show that the HB+protocol remains secure under arbi-
trary concurrent executions of the protocol; this, in particular, means that the
HB+ protocol can be parallelized so as to run in 3 rounds (regardless of the
desired soundness error); (2) the proofs explicitly incorporate the dependence
of the soundness error on the number of iterations of a “basic authentication
step”; and (3) the proofs deal with the inherent error probability in even honest
executions of the protocol. (The reader is referred to [18] for further detailed dis-
cussion of these points.) The initial work [18] was limited to the case of ε < 1/4;
subsequent work [19] extended these results to the case of arbitrary ε < 1/2.

In work tangential to the above, Gilbert et al. [10] show that the HB+ protocol
is not secure against a man-in-the-middle attack, in the sense that a man-in-the-
middle attacker is able to reconstruct the entire secret key of the RFID tag after
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sufficiently-many interactions. (The reader is additionally referred to the work
of Wool et al. [21,22], for an illuminating discussion on the feasibility of man-in-
the-middle attacks in RFID systems.) This has motivated numerous proposals
(e.g., [5]) of HB-variants that are claimed to be secure against the specific attack
of Gilbert et al., but I am not aware of any HB-variant that is provably-secure
against all man-in-the-middle attacks. To my mind, the existence of a man-in-
the-middle attack on the HB+ protocol shows that the protocol must be used
with care, but does not rule out its usefulness; specifically, I view the aim of
the line of research considered here to be the development of protocols which
are exceptionally efficient while still guaranteeing some useful level of (provable)
security. The possibility of man-in-the-middle attacks does not mean that it
is useless to explore the security of authentication protocols in weaker attack
models. Furthermore, as a practical matter, Juels and Weis [17, Appendix A]
note that the man-in-the-middle attack of [10] does not apply in a detection-based
system where numerous failed authentication attempts immediately raise an
alarm. Nevertheless, the design of an HB-variant with provable security against
man-in-the-middle attacks remains an interesting open problem.

1.4 Overview of This Paper

The remainder of this paper is devoted to a description of the HB and HB+ pro-
tocols, as well as the technical proofs of security for these protocols (adapted from
[18,19]). It is not the goal of this paper to replace [18,19]; instead, the main moti-
vation is to give a high-level treatment of the proofs with a focus on those aspects
that might be of greatest interest to coding-theorists. Proof steps that are “techni-
cal” but otherwise uninteresting will be glossed over, and some proofs are omitted
entirely. The interested reader can find full details of all proofs in [18,19].

2 Definitions and Preliminaries

We have already formally defined the LPN problem in the Introduction. Here, we
state and prove the main technical lemma on which we will rely. We also define
notion(s) of security for identification; these are standard, but some complications
arise due to the fact that the HB/HB+ protocols do not have perfect completeness.

2.1 A Technical Lemma

In this section we prove a key technical lemma due to Regev [24, Sect. 4] (though
without the explicit dependence on the parameters given below, which is taken
from [18]): hardness of the LPNε problem implies “pseudorandomness” of As,ε.
Specifically, let Uk+1 denote the uniform distribution on (k +1)-bit strings. The
following lemma shows that oracle access to As,ε (for randomly-chosen s) is
indistinguishable from oracle access to Uk+1.

Lemma 1. Say there exists an algorithm D making q oracle queries, running
in time t, and such that
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∣
∣Pr

[
s ← {0, 1}k : DAs,ε(1k) = 1

]
− Pr

[
DUk+1(1k) = 1

]∣∣ ≥ δ.

Then there exists an algorithm M making q′ = O
(
q · δ−2 log k

)
oracle queries,

running in time t′ = O
(
t · kδ−2 log k

)
, and such that

Pr
[
s ← {0, 1}k : MAs,ε(1k) = s

]
≥ δ/4.

(Various tradeoffs are possible between the number of queries/running time of
M and its success probability in solving LPNε; see [24, Sect. 4]. We do not discuss
these here.)

Proof (Sketch). Algorithm MAs,ε(1k) proceeds as follows:

1. Fix random coins for D.
2. Estimate the probability that D outputs 1 when it interacts with oracle

Uk+1. Call this estimate p.
3. For i ∈ [k] do:

(a) Estimate the probability that D outputs 1 when it interacts with an
oracle implementing the following distribution:

hybi
def=

{
a ← {0, 1}k; c ← {0, 1}; ν ← Berε : (a ⊕ (c · ei), 〈s, a〉 ⊕ ν)

}
,

where ei is the vector with 1 at position i and 0s elsewhere. Note that
M can generate this distribution using its own access to oracle As,ε.
Call the estimate obtained in this step pi.

(b) If |pi − p| ≥ δ/4 set s′i = 0; else set s′i = 1.
4. Output s′ = (s′1, . . . , s′k).

Let us analyze the behavior of M . First, note that with “high” probability
over choice of s and random coins for D it holds that

∣
∣Pr

[
DAs,ε(1k) = 1

]
− Pr

[
DUk+1(1k) = 1

]∣∣ ≥ δ/2, (1)

where the probabilities are now taken only over the answers D receives from its
oracle. We restrict our attention to s, ω for which Eq. (1) holds and show that
in this case M outputs s′ = s with probability at least 1/2. The lemma follows.

Setting the accuracy of our estimations appropriately, we can ensure that
∣
∣Pr

[
DUk+1(1k; ω) = 1

]
− p

∣
∣ ≤ δ/16 (2)

except with probability at most O(1/k). Now focus on a particular iteration i of
steps 3(a) and 3(b). We may once again ensure that

∣
∣Pr

[
Dhybi(1k; ω) = 1

]
− pi

∣
∣ ≤ δ/16 (3)

except with probability at most O(1/k). Applying a union bound (and setting
parameters appropriately) we see that with probability at least 1/2 both Eqs. (2)
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and (3) hold (the latter for all i ∈ [k]), and so we assume this to be the case for
the rest of the proof.

An easy observation is that if si = 0 then hybi = As,ε, while if si = 1 then
hybi = Uk+1. It follows that if si = 0 then

∣
∣Pr

[
Dhybi(1k; ω) = 1

]
− Pr

[
DUk+1(1k; ω) = 1

]∣∣ ≥ δ/2

(by Eq. (1)), and so |pi − p | ≥ δ
2 − 2 · δ

16 = 3δ
8 (by Eqs. (2) and (3)) and

s′i = 0 = si. When si = 1 then

Pr
[
Dhybi(1k; ω) = 1

]
= Pr

[
DUk+1(1k; ω) = 1

]
,

and so |pi −p | ≤ 2 · δ
16 = δ

8 (again using Eqs. (2) and (3)) and s′i = 1 = si. Since
this holds for all i ∈ [k], we conclude that s′ = s. ��

2.2 Overview of the HB/HB+ Protocols, and Security Definitions

The HB and HB+ protocols as analyzed here consist of n parallel iterations
of a “basic authentication step.” (As remarked in the Introduction, the fact
that these iterations can be run in parallel follows from the proofs we will give
here.) We describe the basic authentication step for the HB protocol, and defer
a discussion of the HB+ protocol to Section 3.2. In the HB protocol, a tag T and
a reader R share a random secret key s ∈ {0, 1}k; a basic authentication step
consists of the reader sending a random challenge a ∈ {0, 1}k to the tag, which
replies with z = 〈s,a〉 ⊕ ν for ν ∼ Berε. The reader can then verify whether the
response z of the tag satisfies z

?= 〈s,a〉; we say the iteration is successful if this
is the case. See Figure 1.

T (s, ε) R(s)

� a a ← {0, 1}k

ν ← Berε
z := 〈s,a〉 ⊕ ν z �

verify: z
?
= 〈s,a〉

Fig. 1. The basic authentication step of the HB protocol

Even for an honest tag a basic iteration is unsuccessful with probability ε.
For this reason, a reader accepts upon completion of all n iterations of the
basic authentication step as long as at most ≈ ε · n of these iterations were
unsuccessful. More precisely, let u = u(k) be such that ε · n ≤ u; then the reader
accepts as long as the number of unsuccessful iterations is at most2 u. (Overall,
2 As suggested in [18], an improvement in practice is to also fix a lower bound l and

accept iff the number of unsuccessful iterations is in the range [l, u]. Setting l = 0 (as
we do here) makes no difference in an asymptotic sense.
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then, the entire HB protocol is parameterized by ε, u, and n.) Since εn is the
expected number of unsuccessful iterations for an honest tag, the completeness
error εc (i.e., the probability that an honest tag is rejected) can be calculated
via a Chernoff bound. In particular, we have that for any positive constant δ,
setting u = (1 + δ)εn suffices to achieve εc negligible in n.

Observe that by sending random answers in each of the n iterations, an ad-
versary trying to impersonate a valid tag succeeds with probability

δ∗ε,u,n
def= 2−n ·

u∑

i=0

(
n

i

)
;

that is, δ∗ε,u,n is the best possible soundness error we can hope to achieve for the
given setting of the parameters. Asymptotically, as long as u ≤ (1 − δ) · n/2 for
positive constant δ, the success of this trivial attack will be negligible in n. (This
can again be analyzed using a Chernoff bound.) Our definitions of security will
be expressed in terms of the adversary’s ability to do better than δ∗ε,u,n.

Let T HB
s,ε,n denote the tag algorithm in the HB protocol when the tag holds

secret key s (note that the tag algorithm is independent of u), and let RHB
s,ε,u,n

similarly denote the algorithm run by the tag reader. We denote a complete exe-
cution of the HB protocol between a party T̂ and the reader R by

〈
T̂ , RHB

s,ε,u,n

〉

and say this equals 1 iff the reader accepts.
For a passive attack on the HB protocol, we imagine an adversary A running

in two stages: in the first stage the adversary obtains q transcripts3 of (honest)
executions of the protocol by interacting with an oracle transHB

s,ε,n (this models
eavesdropping); in the second stage, the adversary interacts with the reader and
tries to impersonate the tag. We define the adversary’s advantage as

Advpassive
A,HB (ε, u, n) def= Pr

[
s ← {0, 1}k; AtransHB

s,ε,n(1k) :
〈
A, RHB

s,ε,u,n

〉
= 1

]
− δ∗ε,u,n.

As we will describe in Section 3.2, the HB+ protocol uses two keys s1, s2. We
let T HB+

s1,s2,ε,n denote the tag algorithm in this case, and let RHB+

s1,s2,ε,u,n denote
the algorithm run by the tag reader. For the case of an active attack on the
HB+ protocol, we again imagine an adversary running in two stages: in the first
stage the adversary interacts at most q times with the honest tag algorithm
(with concurrent executions allowed), while in the second stage the adversary
interacts only with the reader. The adversary’s advantage in this case is

Advactive
A,HB+(ε, u, n)

def= Pr
[
s1, s2 ← {0, 1}k; AT HB+

s1,s2,ε,n(1k) :
〈
A, RHB+

s1,s2,ε,u,n

〉
= 1

]
− δ∗ε,u,n.

3 Following [13,14,17], a transcript comprises only the messages exchanged between
the parties and does not include the reader’s decision of whether or not to accept.
If the adversary is given this additional information, the adversary’s advantage may
increase by (at most) an additive factor of q · εc. Note further that, since u can be
set so that the reader accepts the honest tag with all but negligible probability, this
has no effect as far as asymptotic security is concerned.
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We remark that in both the HB and HB+ protocols, the tag reader’s actions
are independent of the secret key(s) it holds except for its final decision whether
or not to accept. So, allowing the adversary to interact with the reader multiple
times (even concurrently) does not give the adversary much additional advantage
(other than the fact that, as usual, the probability that the adversary succeeds in
at least one impersonation attempt scales linearly with the number of attempts).

3 Proofs of Security for the HB and HB+ Protocols

3.1 Security of the HB Protocol Against Passive Attacks

We first prove security assuming ε < 1/4, and then show how the argument can
be extended for the case of ε < 1/2.

Theorem 1. Say there exists an adversary A eavesdropping on at most q execu-
tions of the HB protocol, running in time t, and achieving Advpassive

A,HB (ε, u, n) ≥ δ.
Then there exists an algorithm D making (q + 1) · n oracle queries, running in
time O(t), and such that

∣∣Pr
[
s ← {0, 1}k : DAs,ε(1k) = 1

]
− Pr

[
DUk+1(1k) = 1

]∣∣

≥ δ + δ∗ε,u,n − εc − 2−n ·
2 u∑

i=0

(
n

i

)
.

Asymptotically, for any ε < 1
4 and n = Θ(k) all terms of the above expression

(other than δ) are negligible for appropriate choice of u. Thus, assuming the
hardness of the LPNε problem for ε < 1/4 and appropriate choice of n, u, the
HB protocol is secure against a passive adversary.

Proof. D, given access to an oracle returning (k + 1)-bit strings (a, z), proceeds
as follows:

1. D runs the first phase of A. Each time A requests to view a transcript of
the protocol, D obtains n samples {(ai, zi)}n

i=1 from its oracle and returns
these to A.

2. For A’s second phase, D again obtains n samples {(āi, z̄i)}n
i=1 from its

oracle. D then sends the challenge (ā1, . . . , ān) to A and receives in return
a response Z ′ = (z′1, . . . , z

′
n).

3. D outputs 1 iff Z̄ = (z̄1, . . . , z̄n) and Z ′ differ in at most 2u entries.

When D’s oracle is Uk+1, it is clear that D outputs 1 with probability ex-
actly 2−n ·

∑2u
i=0

(
n
i

)
since Z̄ is in this case uniformly distributed and inde-

pendent of everything else. On the other hand, when D’s oracle is As,ε then
the transcripts D provides to A during the first phase of A’s execution are
distributed identically to real transcripts in an execution of the HB protocol.
Let Z∗ def= (〈s, ā1〉 , . . . , 〈s, ān〉) be the vector of “correct” answers to the chal-
lenge (ā1, . . . , ān) sent by D in the second phase. Then with probability at least



Efficient Cryptographic Protocols Based on the Hardness of Learning Parity 9

δ+δ∗ε,l,u,n it holds that Z ′ and Z∗ differ in at most u entries (since A successfully
impersonates the tag with this probability). Also, since Z̄ is distributed exactly
as the answers of an honest tag, Z̄ and Z∗ differ in at most u positions except
with probability at most εc. It follows that with probability at least δ+δ∗ε,u,n−εc

the vectors Z ′ and Z̄ differ in at most 2u entries, and so D outputs 1 with at
least this probability.

When ε ≥ 1/4 then 2u ≥ 2ε · n ≥ n/2 and so 2−n ·
∑2 u

i=0

(
n
i

)
≥ 1/2; thus,

the above theorem does not guarantee meaningful security in this case and a
different analysis is needed.

Theorem 2. For n = Θ(k) and appropriate setting of u, the HB protocol is
(asymptotically) secure for any ε < 1/2.

Proof. Let u = ε+n, where ε+ is a constant satisfying ε < ε+ < 1
2 . Set ε++ to

be a constant satisfying ε+ − 2ε+ε + ε < ε++ < 1
2 . The reduction D we use here

is similar to that used in the previous proof, except that D now outputs 1 only
if Z̄ and Z ′ differ in at most u′ def= ε++ · n entries.

When D’s oracle is Uk+1, it is once again clear that D outputs 1 with proba-
bility 2−n ·

∑u′

i=0

(
n
i

)
. Since u′ < n/2, this quantity is negligible in k.

When D’s oracle is As,ε then the transcripts D provides to A during the
first phase of A’s execution are distributed identically to real transcripts in an
execution of the HB protocol. Letting Z∗ def= (〈s, ā1〉 , . . . , 〈s, ān〉) be the vector
of correct answers to the challenge (ā1, . . . , ān) sent by D in the second phase,
it follows that with probability δ (i.e., the impersonation probability of A) the
vector of responses Z ′ given by A differs from Z∗ in at most u entries. We show
below that, conditioned on this event, Z ′ and Z̄ differ in at most u′ entries with
all but negligible probability. Thus, D outputs 1 in this case with probability
negligibly close to δ. We conclude from Lemma 1 that δ must be negligible.

Let wt(Z) denote the weight of a vector Z; i.e., the number of entries of Z
equal to 1. Note that the distance between two binary vectors Z1, Z2 is equal to
wt(Z1 ⊕Z2). It remains to show that, conditioned on wt(Z ′ ⊕Z∗) ≤ u, we have
wt(Z ′ ⊕ Z̄) ≤ u′ with all but negligible probability.

Write Z ′ = Z∗ ⊕ w for some vector w of weight at most u = ε+n. The vector
Z̄ is selected by the following process: choose an error vector e by setting each
position of e (independently) to 1 with probability ε, and then set Z̄ = Z∗ ⊕ e.
We see that the probability that Z̄ differs from Z ′ in at most u′ entries is equal
to the probability that

wt(Z ′ ⊕ Z̄) = wt(w ⊕ e) ≤ u′.

It is easy to see that this probability is minimized when wt(w) = u, and so we
assume this to be the case. The random variable wt(w ⊕ e) can be written as a
sum of n indicator random variables, one for each position of the vector w ⊕ e.
The expectation of wt(w ⊕ e) is

u · (1 − ε) + (n − u) · ε = (ε+ − 2ε+ε + ε) · n.
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Since ε++ is a constant strictly larger than (ε+ − 2ε+ε + ε), a Chernoff bound
then implies that wt(w ⊕ e) ≤ ε++n with all but negligible probability.

3.2 Security of the HB+ Protocol Against Active Attacks

The HB protocol is insecure against an active attack, as an adversary can repeat-
edly query the tag with the same challenge (a1, . . . ,an) and thereby determine
with high probability the correct values of 〈s, a1〉 , . . . , 〈s,an〉 (after which solv-
ing for s is easy). To combat such an attack, Juels and Weis [17] propose to
modify the HB protocol by having the tag and reader share two (independent)
keys s1, s2 ∈ {0, 1}k. A basic authentication step now consists of three rounds:
first the tag sends a random “blinding factor” b ∈ {0, 1}k; the reader replies
with a random challenge a ∈ {0, 1}k as before; and finally the tag replies with
z = 〈s1,b〉 ⊕ 〈s2,a〉 ⊕ ν for ν ∼ Berε. As in the HB protocol, the tag reader can
then verify whether the response z of the tag satisfies z

?= 〈s1,b〉 ⊕ 〈s2,a〉, and
we again say the iteration is successful if this is the case. See Figure 2.

T (s1, s2, ε) R(s1, s2)

b ← {0, 1}k b �
� a a ← {0, 1}k

ν ← Berε

z := 〈s1,b〉 ⊕ 〈s2,a〉 ⊕ ν z �
verify: z

?
= 〈s1,b〉 ⊕ 〈s2,a〉

Fig. 2. The basic authentication step of the HB+ protocol

The actual HB+ protocol consists of n parallel iterations of the basic authenti-
cation step (and so the entire protocol requires only three rounds). The protocol
also depends upon parameters u as in the case of the HB protocol, and the values
εc and δ∗ε,u,n are defined exactly as there.

The following result shows that the HB+ protocol is secure against active
attacks, assuming the hardness of the LPNε problem. An important point is
that the proof does not require any rewinding of the adversary in simulating
the first phase of the attack, and the proof therefore holds even when various
executions of the HB+ protocol are run in parallel (or even concurrently).

We refer to [18] for a simpler proof when ε < 1/4, and present here only the
more complicated proof (from [19]) that deals with any ε < 1/2. This, more
complicated proof relies on known bounds on the size of constant-weight codes
having certain minimum distance [15,16,11].

Theorem 3. Let ε < 1/2 and assume the LPNε problem is hard. Let n = Θ(k)
and u = ε+n where ε+ is a constant satisfying ε < ε+ < 1/2. Then the HB+
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protocol with this setting of the parameters has negligible completeness error, and
is (asymptotically) secure against active attacks.

Proof. A standard Chernoff bound shows that the completeness error is negligi-
ble for the given setting of the parameters. For any probabilistic polynomial-time
(ppt) adversary A attacking the HB+ protocol, we construct a ppt adversary
D attempting to distinguish whether it is given oracle access to As,ε or to Uk+1
(as in Lemma 1). Relating the advantage of D to the advantage of A gives the
stated result.

D, given access to an oracle returning (k + 1)-bit strings (b, z̄), proceeds as
follows:

1. D chooses s2 ∈ {0, 1}k uniformly at random. Then, it runs the first phase
of A. To simulate a basic authentication step, D does the following: it obtains
a sample (b, z̄) from its oracle and sends b as the initial message. A replies
with a challenge a, and then D responds with z = z̄ ⊕ 〈s2, a〉.

2. When A is ready for the second phase of its attack, A sends an initial mes-
sage b1, . . . ,bn. In response, D chooses random a1

1, . . . ,a
1
n ∈ {0, 1}k, sends

these challenges to A, and records A’s response z1
1 , . . . , z

1
n. Then D rewinds

A, chooses random a2
1, . . . ,a

2
n ∈ {0, 1}k, sends these to A, and records A’s

response z2
1 , . . . , z

2
n.

3. Let z⊕i := z1
i ⊕ z2

i and set Z⊕ def=
(
z⊕1 , . . . , z⊕n

)
. Let âi = a1

i ⊕ a2
i and

ẑi = 〈s2, âi〉, and set Ẑ
def= (ẑ1, . . . , ẑn). D outputs 1 iff Z⊕ and Ẑ differ in

fewer than u′ = ε++ · n entries, for some constant ε++ < 1
2 to be fixed later.

Let us analyze the behavior of D:

Case 1: Say D’s oracle is Uk+1. In step 1, since z̄ is uniformly distributed
and independent of everything else, the answers z that D returns to A are
uniformly distributed and independent of everything else. It follows that A’s
view is independent of the secret s2 chosen by D.

The {âi}n
i=1 are uniformly and independently distributed, and so except with

probability 2n

2k they are linearly independent and non-zero (via a standard ar-
gument; see [18]). Assuming this to be the case, Ẑ is uniformly distributed over
{0, 1}n from the point of view of A. But then the probability that Z⊕ and Ẑ

differ in fewer than u′ entries is at most 2−n ·
∑�u′�

i=0

(
n
i

)
. Since u′/2 is a constant

strictly less than 1
2 , we conclude that D outputs 1 in this case with negligible

probability 2n

2k + 2−n ·
∑�u′�

i=0

(
n
i

)
.

Case 2: Say D’s oracle is As1,ε for randomly-chosen s1. In this case, D provides a
perfect simulation for the first phase of A. Let ω denote all the randomness used
to simulate the first phase of A, which includes the keys s1, s2, the randomness
of A, and the randomness used in responding to A’s queries. For a fixed ω, let δω

denote the probability (over random challenges a1, . . . ,an sent by the tag reader)
that A successfully impersonates the tag in the second phase. The probability
that A successfully responds to both sets of queries a1

1, . . . ,a
1
n and a2

1, . . . ,a
2
n
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sent by D is δ2
ω. The overall probability that A successfully responds to both

sets of queries is thus

Expω

(
δ2
ω

)
≥

(
Expω(δω)

)2
= δ2

A,

using Jensen’s inequality.
We show below that conditioned on both challenges being answered success-

fully (and for appropriate choice of ε++), Z⊕ differs from Ẑ in fewer than u′

entries with constant probability. Putting everything together, we conclude that
D outputs 1 in this case with probability Ω(δ2

A). It follows from Lemma 1 that
δA must be negligible.

We now prove the above claim regarding the probability that Z⊕ differs from
Ẑ in fewer than u′ entries. Set 1

2 > ε++ > 1
2 · (1 − (1 − 2ε+)2). Fixing all

randomness used in the first phase (as above) induces a function fA from queries
a1, . . . ,an (with each ai ∈ {0, 1}k) to vectors (z1, . . . , zn) (with each zi ∈ {0, 1})
given by the response function of A in the second phase. Define the function
fcorrect that returns the “correct” answers for a particular query; i.e.,

fcorrect(a1, . . . ,an) def= (〈s1,b1〉 ⊕ 〈s2,a1〉 , . . . , 〈s1,bn〉 ⊕ 〈s2, an〉)

(recall that b1, . . . ,bn are the vectors sent by A in the first round). Define

Δ(a1, . . . ,an) def= fA(a1, . . . ,an) ⊕ fcorrect(a1, . . . ,an),

and say a query a1, . . . ,an is good if4 wt(Δ(a1, . . . ,an)) ≤ u. That is, a query
a1, . . . ,an is good if A’s response is within distance u of the “correct” response;
i.e., A successfully impersonates the tag in response to such a query.

Let D denote the distribution over Δ(a1, . . . ,an) induced by a uniform choice
of a good query a1, . . . ,an (we assume at least one good query exists since we
are only interested in analyzing this case). Note that, by definition of a good
query, each vector in the support of D has weight at most u. Our goal is to show
that with constant probability over Δ1, Δ2 generated according to D, we have
wt(Δ1 ⊕Δ2) < u′. We remark that this claim does not involve any assumptions
regarding the probability that a randomly-chosen query is good.

To see how this maps on to the reduction being analyzed above, note that
conditioning on the event that A successfully responds to queries a1

1, . . . ,a
1
n and

a2
1, . . . ,a

2
n is equivalent to choosing these two queries uniformly from the set of

good queries. Setting Δ1 def= Δ(a1
1, . . . ,a

1
n) and Δ2 analogously, we have

Δ1 ⊕ Δ2

= fA(a1
1, . . . ,a

1
n) ⊕ fcorrect(a1

1, . . . ,a
1
n) ⊕ fA(a2

1, . . . ,a
2
n) ⊕ fcorrect(a2

1, . . . ,a
2
n)

= Z⊕ ⊕ fcorrect(a1
1, . . . ,a

1
n) ⊕ fcorrect(a2

1, . . . ,a
2
n).

4 As in the proof of the previous theorem, the weight wt(Z) of a vector Z is the
number of its entries equal to 1.
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D cannot compute fcorrect(a1
1, . . . ,a

1
n) or fcorrect(a2

1, . . . ,a
2
n) since it does not

know s1. However, it can compute

fcorrect(a1
1, . . . ,a

1
n) ⊕ fcorrect(a2

1, . . . ,a
2
n)

=
(
〈s1,b1〉 ⊕

〈
s2,a1

1
〉
, . . . , 〈s1,bn〉 ⊕

〈
s2, a1

n

〉)

+
(
〈s1,b1〉 ⊕

〈
s2, a2

1
〉
, . . . , 〈s1,bn〉 ⊕

〈
s2,a2

n

〉)

=
(〈

s2,a1
1
〉

⊕
〈
s2,a2

1
〉
, . . . ,

〈
s2, a1

n

〉
⊕

〈
s2,a2

n

〉)

=
(〈

s2, (a1
1 ⊕ a2

1)
〉
, . . . ,

〈
s2, (a1

n ⊕ a2
n)

〉)
= Ẑ.

We thus see that Z⊕ and Ẑ differ in fewer than u′ entries exactly when Δ1 and
Δ2 differ in fewer than u′ = ε++n entries. It is the latter probability that we
now analyze.

Let δ be a (positive) constant such that ε++ = 1
2 · (1 − δ). Let γ

def= 1 − 2ε+,
and note that by our choice of ε++ we have δ < γ2. Set

c
def=

1 − δ

γ2 − δ
+ 1.

We show that for two vectors Δ1, Δ2 chosen independently according to distri-
bution D, we have wt(Δ1 ⊕Δ2) < ε++n with (constant) probability at least 1

c2 .
Assume not. So

Pr[Δ1, Δ2 ← D : wt(Δ1 ⊕ Δ2) < ε++n] <
1
c2 .

But then, by a union bound,

Pr[Δ1, . . . , Δc ← D : ∃i �= j s.t. wt(Δ1 ⊕ Δ2) < ε++n] <
1
2
.

In particular, there exist c vectors Δ1, . . . , Δc in the support of D whose pairwise
distances are all at least ε++n = 1

2 · (1 − δ)n. Furthermore, each Δi has weight
at most u = 1

2 · (1 − γ)n since it lies in the support of D. However, the Johnson
bound [15,16] (our notation was chosen to be consistent with the formulation
in [11, Theorem 1]), which gives bounds on the size of constant-weight codes of
certain minimum distance, shows that no such set {Δi}c

i=1 exists.

4 Conclusions and Open Questions

There are a number of interesting questions regarding the HB and HB+ protocols
themselves. First, it would be nice to improve the concrete security reductions
obtained here, or to propose new protocols with tighter security reductions. It
would also be interesting to obtain simpler proofs even for ε ≥ 1/4 (there seems
to be no inherent reason why the analysis should become more complex in that
case). As discussed in the Introduction, it would also be very interesting to see
an efficient protocol based on the LPN problem that is provably resistant to
man-in-the-middle attacks.
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More generally, it remains to be seen whether the LPN problem can be used to
construct efficient cryptographic protocols for other tasks. Some hope is provided
by Regev’s result [24] showing that public-key encryption can be based on a
generalization of the LPN problem.
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Abstract. We survey our constructions of pseudo random sequences
(binary, Z8, Z2l ,. . . ) from Galois rings. Techniques include a local Weil
bound for character sums, and several kinds of Fourier transform. Ap-
plications range from cryptography (boolean functions, key generation),
to communications (multi-code CDMA), to signal processing (PAPR re-
duction).

Keywords: Correlation, Galois Rings, MSB, CDMA, OFDM, PAPR.

1 Introduction

Since the seminal work of Claude Shannon in the 40’s the algebraic structure of
coding alphabets was a finite field. However, there was a push towards finite rings
due to modulation requirements, a 4− PSK modulation being more powerful
than an antipodal modulation, for instance [1]. This led researchers in the 70’s
to consider cyclic codes over Z/MZ, with a special attention for M a power of
a prime [2,19]. In the 90’s cyclic codes over rings received a lot of attention due
to many pure applications: the solution of the Kerdock Preparata riddle [8], and
a new construction of the Leech lattice [3], (both for M = 4), to name but a
few. In this golden dawn, new and powerful mathematical techniques arose, the
most profound being probably a p−adic analogue of the Weil bound on character
sums [10], and families of low correlation sequences (based on weighted degree
trace codes) tailored for that bound [20].

In the present decade, new engineering applications emerged that required
that machinery, and are significantly different, but not unrelated to the classical
use in Spread Spectrum and CDMA systems illustrated in [11,7], or to take a
more recent example the 3GPP standard (see www.3gpp.org). In particular an
important quantity for the safe processing of electronic equipment is the Peak
to Average Power Ratio (PAPR), signals with high dynamic range being
potentially harmful to operational amplifiers. Two models of signalling sequences

S.D. Galbraith (Eds.): Cryptography and Coding 2007, LNCS 4887, pp. 16–33, 2007.
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both due to Paterson and co-workers lead to somewhat different mathematical
formulation. In the first scenario, motivated by OFDM applications, and based
on DFT calculation, we are to control some hybrid character sums (i.e. involving
not only additive but also multiplicative characters) in relation to many valued
sequences [17]. In the second approach, motivated by multi-code CDMA, we
are to control the nonlinearity of binary sequences of length a power of 2
[16]. This notion of nonlinearity coincides with the one familiar from boolean
functions theory. In both models sequences live in families and are supposed to
form a code either spherical in the first case or binary in the second. Both papers
[17,16] already use weighted degree trace codes and our contribution is mostly
of extension from Z4 to Z2� for � > 2 [22], or to non primitive periods [24]. In
general, the use of larger rings provides extra flexibility in the design choice; the
sequences families constructed in that way having a larger size but a somewhat
larger PAPR. For a book on PAPR reduction see [13]. For recent results on codes
for PAPR reduction see [18]. For books on Galois rings see [25,26].

A distinct, older motivation to study pseudo random sequences over rings is
the use of the Most Significant Bit (MSB) to obtain highly nonlinear binary
sequences, mostly for cryptographic purposes (key generation in stream ciphers).
This is due to Dai and her school [5,6]. In [21] we improve some bounds of
autocorrelation and imbalance of such sequences in [6].

The material is organized as follows. Section 2 contains definitions and no-
tation on Galois rings. Section 3 collects the bounds we need on characters
sums. In particular the bound on Fourier coefficients of the most significant bit
(MSB) function that was obtained in [12]. Section 4 defines the polynomials
over Galois rings needed to define the trace codes. Section 5 considers the bi-
nary sequence constructed from sequences over Z8 that was introduced in [12].
Section 6 considers short binary sequences of [22], motivated by [16]. Section
7 contains the binary sequences constructed by taking the MSB of 2l−ary se-
quences [21].Section 8 contains the PAPR reduction sequences over large rings
of [24]. Section 9 considers quadriphase sequences of maximal period of [23].

2 Preliminaries

Let R = GR(2l, m) denote the Galois ring of characteristic 2l. It is the unique
Galois extension of degree m of Z2l , with 2lm elements.

R = GR(2l, m) = Z2l [X ]/(h(X)).

where h(X) is a basic irreducible polynomial of degree m. Let ξ be an element in
GR(2l, m) that generates the Teichmüller set T of GR(2l, m) which reduces to F2m

modulo 2. Specifically, letT ={0, 1, ξ, ξ2, . . . , ξ2m−2} andT ∗={1, ξ, ξ2, . . . , ξ2m−2}.
We use the convention that ξ∞ = 0.

The 2-adic expansion of x ∈ GR(2l, m) is given by

x = x0 + 2x1 + · · · + 2l−1xl−1,
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where x0, x1, . . . , xl−1 ∈ T . The Frobenius operator F is defined for such an x
as

F (x0 + 2x1 + · · · + 2l−1xl−1) = x2
0 + 2x2

1 + · · · + 2l−1x2
l−1,

and the trace Tr, from GR(2l, m) down to Z2l , as

Tr :=
m−1∑

j=0

F j .

We also define another trace tr from F2m down to F2 as

tr(x) :=
m−1∑

j=0

x2j

.

Throughout this note, we let n = 2m and R∗ = R\2R.
Let MSB : Z

n
2l → Z

n
2 be the most-significant-bit map, i.e.

MSB(y) = yl−1, where y = y0 + 2y1 + . . . + 2l−1yl−1 ∈ Z2l ,

is its 2-adic expansion.

3 DFT and the Local Weil Bound

We assume henceforth in the whole paper that l ≥ 3. Let l be a positive integer
and ω = e2πi/2l

be a primitive 2l-th root of 1 in C. Let ψk be the additive
character of Z2l such that

ψk(x) = ωkx.

Let μ : Z2l → {±1} be the be the mapping μ(t) = (−1)c, where c is the most
significant bit of t ∈ Z2l , i.e. it maps 0, 1, ..., 2l−1 − 1 to +1 and 2l−1, 2l−1 +
1, ..., 2l − 1 to −1. Our goal is to express this map as a linear combination of
characters. Recall the Fourier transformation formula on Z2l :

μ =
2l−1∑

j=0

μjψj , where μj =
1
2l

2l−1∑

x=0

μ(x)ψj(−x). (1)

Combining Lemma 4.1 and Corollary 7.4 of [12], we obtain

Lemma 1. Let q = 8. For the constants μj = (1 + ζ−j + ζ−2j + ζ−3j)/4 j =
1, 3, 5, 7 we have

μ = μ1ψ1 + μ3ψ3 + μ5ψ5 + μ7ψ7,

and μj = 0, for even j. Furthermore

(|μ1| + |μ3| + |μ5| + |μ7|)2 = 2 +
√

2.

Let q = 2l where l ≥ 4. Then
q−1∑

j=0

|μj | <
2
π

ln(q) + 1. (2)
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For all β �= 0 in the ring R = GR(2l, m), we denote by Ψβ the character

Ψβ : R → C
∗, x �→ ωTr(βx).

Note that for the defined above ψk and Ψβ, we have:

ψk(Tr(βx)) = Ψβk(x). (3)

Let f(X) denote a polynomial in R[X ] and let

f(X) = F0(X) + 2F1(X) + . . . + 2l−1Fl−1(X)

denote its 2-adic expansion. Let di be the degree in x of Fi. Let Ψ be an arbitrary
additive character of R, and set Df to be the weighted degree of f , defined as

Df = max {d02l−1, d12l−2, . . . , dl−1}.

With the above notation, we have (under mild technical conditions) the bound

|
∑

x∈T
Ψ(f(x))| ≤ (Df − 1)2m/2. (4)

See [10] for details.

4 Polynomials over the Galois Ring GR(2l, m)

Recall that R = GR(2l, m). A polynomial

f(X) =
d∑

j=0

cjx
j ∈ R[X ]

is called canonical if cj = 0 for all even j.
Given an integer D ≥ 4, define

SD = {f(X) ∈ R[X ] | Df ≤ D, f is canonical},

where Df is the weighted degree of f . Observe that SD is an GR(2l, m)−module.
Recall [21, Lemma 4.1]. For a weaker condition on D see [18, Theorem 6.13].

Lemma 2. For any integer D ≥ 4, we have:

|SD| = 2(D−�D/2l�)m,

where 	x
 is the largest integer ≤ x.

Recall the following property of the weighted degree [22, Lemma 3.1]

Lemma 3. Let f(X) ∈ R[X ] and α ∈ R∗ = R\2R is a unit of R and let
g(X) = f(αX) ∈ R[X ]. Then

Dg = Df ,

where Df , Dg are respectively the weighted degrees of the polynomials f(X) and
g(X).
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5 Binary Sequences over Z8

In this section we consider the case of GR(8, m) and will consider the periodic
sequences c0, c1, . . . of period 2m − 1. Let α ∈ R∗, then define

ct = MSB(Tr(αξt)), (5)

where t = 0, . . . , n − 2 and n = 2m. This sequence was introduced in [12].
We now have the following results on, respectively, the imbalance and the

crosscorrelation function of the binary sequence (ct)t∈N.

Theorem 1. With notation as above, we have

∣
∣
∣

n−2∑

t=0

(−1)ct

∣
∣
∣ ≤

√
2 +

√
2(3

√
2m + 1).

Proof. By definition of ψj and Ψα, (where 0 �= α ∈ R), for any 0 ≤ j ≤ 7, we
have:

ψj(Tr(αx)) = Ψαj(x).

As we have ct = MSB(Tr(αξt)), and by (1), we obtain that (−1)ct is equal to:

μ(Tr(αξt)) =
7∑

j=0

μjψj(Tr(αξt)) =
7∑

j=0

μjΨαj(ξt)). (6)

Changing the order of summation, we obtain that:

n−2∑

t=0

(−1)ct =
7∑

j=0

μj

n−2∑

t=0

Ψαj(ξt). (7)

Inequality (4) implies that:
∣
∣
∣

∑

x∈T ∗

Ψλ(x)
∣
∣
∣ ≤ 3

√
2m + 1, (8)

for all λ ∈ GR(8, m), λ �= 0. Thus, the absolute value of the Right Hand Side of
(7) can be estimated from above by:

(3
√

2m + 1)
7∑

j=0

|μj |.

Applying Lemma 1 the Theorem follows. ��

Theorem 2. With notation as above, and for all phase shifts τ, 0 < τ < 2m −1,
let

Θ(τ) =
∑

t∈I
(−1)ct(−1)c′

t+τ ,
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where ct = MSB(Tr(αξt)) and c′t = MSB(Tr(α′ξt)) are two elements such that
for any pair 0 ≤ j1, j2 ≤ 7 the following condition holds

j1α + j2α
′ξτ �= 0.

We then have the bound

|Θ(τ)| ≤ 3(2 +
√

2)
√

2m.

Proof. As we have ct = MSB(Tr(αξt)) and c′t = MSB(Tr(α′ξt)), where t ranges
between 0 and n− 2 and by (1), applying (6) and changing the order of summa-
tion, we obtain that:

Θ(τ) =
7∑

j1=0

7∑

j2=0

μj1μj2

n−2∑

t=0

Ψj1(αξt)Ψj2(α
′ξt+τ ). (9)

By definition of Ψ , we have:

Ψj1(αξt)Ψj2 (α
′ξt+τ ) = Ψβ(ξt),

where β = j1α + j2α
′ξτ �= 0. Applying (4), we obtain:

∣
∣
∣

n−2∑

t=0

Ψj1(αξt)Ψj2(α
′ξt+τ )

∣
∣
∣ =

∣
∣
∣

n−2∑

t=0

Ψβ(ξt)
∣
∣
∣ ≤ 3

√
2m + 1. (10)

Applying Lemma 1, we obtain

7∑

j1=0

7∑

j2=0

|μj1μj2 | =
( 2l−1∑

j=0

|μj |
)2

= 2 +
√

2. (11)

Combining it with (10) the result follows. ��

6 Binary Sequences of Period 2m − 1

In this section we will consider periodic sequences c0, c1, . . . of period n − 1. For
any integer D ≥ 4, let f ∈ SD and set

ct = MSB(Tr(f(ξt))), (12)

where t = 0, . . . , n − 2.
We now have the following results on, respectively, the imbalance and the

crosscorrelation function of the binary sequence defined by (12).

Theorem 3. With notations as above, we have:

∣
∣
∣

n−2∑

t=0

(−1)ct

∣
∣
∣ ≤ (2l ln(2)/π + 1)(D − 1)

√
n,

where ct = MSB(Tr(f(ξt))).
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Proof. As we have ct = MSB(Tr(f(ξt))), and by (1), we obtain that (−1)ct is
equal to:

μ(Tr(f(ξt))) =
2l−1∑

j=0

μjψj(Tr(f(ξt))) =
2l−1∑

j=0

μjΨj(f(ξt)).

Changing the order of summation, we obtain that:

n−2∑

t=0

(−1)ct =
2l−1∑

j=0

μj

∑

x∈T ∗

Ψj(f(x)). (13)

Applying (4), the absolute value of the Right Hand Side of (13) can be esti-
mated from above by:

((Df − 1)
√

2m + 1)
2l−1∑

j=0

|μj |. (14)

Applying Lemma 1 the sum (14) can be estimated from above by:

(2l ln(2)/π + 1)(Df − 1)
√

2m.

The result follows. ��

Theorem 4. With notation as above, and for all phase shifts τ, in the range
0 < τ < 2m − 1, let (n = 2m)

Θ(τ) =
n−2∑

t=0

(−1)ct(−1)c′
t+τ ,

where ct = MSB(Tr(f1(ξt))) and c′t = MSB(Tr(f2(ξt))). We then have the bound
(l ≥ 4):

|Θ(τ)| ≤
(

2l

π
ln(2) + 1

)2

[1 + (D − 1)
√

2m],

where D = max{Df1 , Df2} and for any pair 0 ≤ j1, j2 ≤ 2l − 1 the following
condition holds

j1f1(x) + j2f2(xξτ ) �= 0.

Proof. As we have ct = MSB(Tr(f1(ξt))) and c′t = MSB(Tr(f2(ξt))), where t
ranges between 0 and n − 2 and by (1), we obtain that (−1)ct is equal to:

μ(Tr(f1(ξt))) =
2l−1∑

j=0

μjψj(Tr(f1(ξt))) =
2l−1∑

j=0

μjΨj(f1(ξt)).

Changing the order of summation, we obtain that:

Θ(τ) =
2l−1∑

j1=0

2l−1∑

j2=0

μj1μj2

n−2∑

t=0

Ψj1(f1(ξt))Ψj2(f2(ξt+τ )). (15)
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By definition of Ψ , we have:

Ψj1(f1(ξt))Ψj2(f2(ξt+τ )) = Ψ(g(ξt)),

where g(X) = j1f1(X) + j2f2(Xξτ ). Note that if f(X) ∈ SD then f(Xξτ ) ∈ SD

since, by Lemma 3 the change of variable X → Xξτ does not increase the
weighted degree. Moreover SD is an R-linear space. Thus the polynomial g(X)
belongs to SD along with f1 and f2. Applying (4), we obtain:

∣
∣
∣

n−2∑

t=0

Ψj1(f1(ξt))Ψj2(f2(ξt+τ ))
∣
∣
∣ =

∣
∣
∣

∑

x∈T ∗

Ψ(g(x))
∣
∣
∣ ≤ 1 + (D − 1)

√
2m. (16)

Applying Lemma 1, we obtain

2l−1∑

j1=0

2l−1∑

j2=0

|μj1μj2 | =
( 2l−1∑

j=0

|μj |
)2

≤
(

2l ln(2)
π

+ 1
)2

. (17)

Combining (16) with (17) the result follows. ��

7 Binary Codes and Sequences of Maximal Length

Let γ = ξ(1+2λ) ∈ R, where ξ ∈ T and λ ∈ R∗. Assume 1+2λ is of order 2l−1.
Since ξ is of order 2m − 1 then γ is an element of order N = 2l−1(2m − 1).

In this section we consider the periodic sequences c0, c1, . . . of period N . Let
α ∈ R∗, then define

ct = MSB(Tr(αγt)), (18)

where t = 0, . . . , N − 1. This sequence was introduced and studied in [21].
We now have the following results on, respectively, the imbalance and the

crosscorrelation function of the binary sequence (ct)t∈N, (18) under the MSB
map.

First, we need the following technical lemma:

Lemma 4. Let γ = ξ(1 + 2λ) ∈ R, where ξ ∈ T ∗, λ ∈ R∗ = R\2R, and
1 + 2λ ∈ R is an element of order 2l−1. Set N = 2l−1(2m − 1). Then, for any
0 �= β ∈ R, we have:

N−1∑

j=0

Ψβ(γj) =
2l−1−1∑

j=0

(
∑

x∈T ∗

Ψβ(1+2λ)j (x)

)

.

Proof. Since (2l−1, 2m − 1) = 1, as j ranges over {0, 1, . . . , N − 1}, the set of
ordered pairs

{(j (mod 2l−1), j (mod 2m − 1))}
runs over all pairs (j1, j2), where j1 ∈ {0, 1, . . . , 2l−1−1} and j2 ∈ {0, 1, . . . , 2m−
2}. Thus the set

{γt; t = 0, 1, . . . , N − 1} = {ξt(1 + 2λ)t; t = 0, 1, . . . , N − 1}.
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is equal to the cartesian product of sets:

{ξt1 ; t1 = 0, 1, . . . , 2m − 2} × {(1 + 2λ)t2 ; t = 0, 1, . . . , 2l−1 − 1}. (19)

From (19) we obtain:

N−1∑

j=0

Ψβ(γj) =
2l−1−1∑

j1=0

2m−2∑

j2=0

Ψβ((1 + 2λ)j1ξj2),

whereas observing that

Ψβ((1 + 2λ)j1ξj2 ) = Ψβ′(ξj2),

where β′ = β(1 + 2λ)j1 , yields:

2l−1−1∑

j1=0

2m−2∑

j2=0

Ψβ(1+2λ)j1 (ξj2).

The Lemma follows. ��

Theorem 5. With notation as above, we have:

∣
∣
∣

N−1∑

t=0

(−1)ct

∣
∣
∣ ≤ (2l ln(2)/π + 1)2l−1[(2l−1 − 1)

√
2m + 1].

Proof. Recall that γ = ξ(1 + 2λ) ∈ R, where ξ ∈ T ∗ is a generator of the
Teichmüller set and λ ∈ R∗. By definition of ψj and Ψα, (where 0 �= q ∈ R), for
any 0 ≤ j ≤ 2l − 1, we have:

ψj(Tr(αx)) = Ψαj(x).

As we have ct = MSB(Tr(αγt)), and by (1), we obtain that (−1)ct is equal to:

μ(Tr(αγt)) =
2l−1∑

j=0

μjψj(Tr(αγt)) =
2l−1∑

j=0

μjΨαj(γt).

Changing the order of summation, we obtain that:

N−1∑

t=0

(−1)ct =
2l−1∑

j=0

μj

N−1∑

t=0

Ψαj(γt). (20)

Applying Lemma 4, we have:

N−1∑

t=0

Ψαj(γt) =
2l−1−1∑

t=0

(
∑

x∈T ∗

Ψαj(1+2λ)t(x)

)

. (21)
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Applying Lemma 3.1 of [21] to each of the 2l−1 sums over x, we obtain that:

∣
∣
∣

N−1∑

t=0

Ψαj(γt)
∣
∣
∣ ≤ 2l−1[(2l−1 − 1)

√
2m + 1].

Thus, the absolute value of the Right Hand Side of (20) can be estimated from
above by:

2l−1[(2l−1 − 1)
√

2m + 1]
2l−1∑

j=0

|μj |. (22)

Recall Corollary 7.4 of [12] which states that for l ≥ 4 the following estimate
holds:

2l−1∑

j=0

|μj | <
2l ln(2)

π
+ 1.

Thus (22) can be estimated from above by:

(2l ln(2)/π + 1)2l−1[(2l−1 − 1)
√

2m + 1].

The Lemma follows. ��

We now proceed to bound the crosscorrelation.

Theorem 6. With notation as above, and for all phase shifts τ, 0 < τ < 2m −1,
let

Θ(τ) =
N−1∑

t=0

(−1)ct(−1)c′
t+τ ,

where ct = MSB(Tr(αγt)) and c′t = MSB(Tr(α′γt)) are such that for any pair
0 ≤ j1, j2 ≤ 2l − 1 the following condition holds

j1α + j2α
′ξτ �= 0.

We then have (for l ≥ 4) the bound :

|Θ(τ)| ≤
(

2l

π
ln(2) + 1

)2

2l−1[(2l−1 − 1)
√

2m + 1] = C′
l

√
2m.

Here C′
l is a constant in l of order l222l, i.e.

C′
l = (ln(2)/π)2(l222l + o(1)).

Proof. Again let γ = ξ(1+2λ) ∈ R, where ξ ∈ T is a generator of the Teichmüller
set and λ ∈ R∗. As we have ct = MSB(Tr(αγt)), and by (1), we obtain that
(−1)ct is equal to:

μ(Tr(αγt)) =
2l−1∑

j=0

μjψj(Tr(αγt)) =
2l−1∑

j=0

μjΨαj(γt).
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Changing the order of summation, we obtain that:

Θ(τ) =
2l−1∑

j1=0

2l−1∑

j2=0

μj1μj2

N−1∑

t=0

Ψβ(γt).

Here β = j1α + j2α
′γτ �= 0. Applying Corollary 7.4 of [12] (for l ≥ 4), we have:

2l−1∑

j1=0

2l−1∑

j2=0

|μj1μj2 | =

⎛

⎝
2l−1∑

j=0

|μj |

⎞

⎠

2

≤
(

2l

π
ln(2) + 1

)2

. (23)

Applying Lemma 4, we have:

N−1∑

j=0

Ψβ(γj) =
2l−1−1∑

j=0

(
∑

x∈T
Ψβ(1+2λ)j (x)

)

,

where 0 �= β(1 + 2λ)j ∈ R so that each sum over x can be estimated using
Lemma 3.1 of [21]. Thus, we have:

∣∣
∣

N−1∑

j=0

Ψβ(γj)
∣∣
∣ ≤ 2l−1[(2l−1 − 1)

√
2m + 1]. (24)

Combining (23) with (24) the Lemma follows. ��

8 Non Binary Codes of Maximal Length

Let γ = ξ(1+2λ) ∈ R, where ξ ∈ T and λ ∈ R∗. Assume 1+2λ is of order 2l−1.
Since ξ is of order 2m − 1 then γ is an element of order N = 2l−1(2m − 1).

Following [6, Lemma 2], we define the code of length N :

Sl,m,D = {(Tr(f(γt)))N−1
t=0 | f ∈ SD}. (25)

This sequence was introduced and studied in [24].
We prepare the upper bound on the PAPR of codewords by a result on a

character sum.

Theorem 7. Let γ = ξ(1 + 2λ) ∈ R, where ξ ∈ T ∗, λ ∈ R∗ = R\2R, and
1 + 2λ ∈ R is an element of order 2l−1. Set N = 2l−1(2m − 1). Then for any
j ∈ [0, 2l−1 − 1], we have

∣
∣
∣

N−1∑

k=0

Ψ(f(γk))e2πikj/N
∣
∣
∣ ≤ 2l−1[Df

√
2m + 1]. (26)
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Proof. Since (2l−1, 2m − 1) = 1, as j ranges over {0, 1, . . . , N − 1}, the set of
pairs

{(j (mod 2l−1), j (mod 2m − 1))}
runs over all pairs (j1, j2), where j1 ∈ {0, 1, . . . , 2l−1} and j2 ∈ {0, 1, . . . , 2m−1}.
Thus the set

{γk; k = 0, 1, . . . , N − 1} = {ξk(1 + 2λ)k; k = 0, 1, . . . , N − 1}.

is equal to the direct product of sets:

{ξk1 ; t1 = 0, 1, . . . , 2m − 1} × {(1 + 2λ)k2 ; t = 0, 1, . . . , 2l−1 − 1}, (27)

where
k ≡ k1(mod 2m − 1), k ≡ k2(mod 2l−1).

By the CRT there exist integers c1, c2 such that for all k = 0, 1, . . . , N − 1 we
can write

k = 2l−1c1k1 + (2m − 1)c2k2

Consequently since γ = ξ(1 + 2λ), where ξ2m−1 = 1 and (1 + 2λ)2
l−1

= 1, the
sum of the left hand side of (26) is equal to:

2l−1−1∑

k2=0

2m−2∑

k1=0

Ψ(f(ξk1(1 + 2λ)k2))e2πikj/N . (28)

Set fk2(x) = f(x(1 + 2λ)k2). Then, expressing k as a function of k1 and k2, the
above sum is equal to:

2l−1−1∑

k2=0

2m−2∑

k1=0

Ψ(fk2(ξ
k1))e2πic1k1j/(2m−1)e2πic2k2j/2l−1

.

Using Lemma 3 the weighted degree of fk2 is bounded by Df . Applying (4) to
each of the 2l−1 inner sums yields:

∣
∣
∣
2m−2∑

t=0

Ψ(fk2(ξ
t))e2πic1k1j/(2m−1)

∣
∣
∣ ≤ Df

√
2m + 1.

Thus, the absolute value of (28) can be estimated from above by

2l−1[Df

√
2m + 1].

The result follows. ��

This character sum estimate translates immediately in terms of PAPR.

Corollary 1. For every c ∈ Sl,m,D the PAPR is at most

2l−1

2m − 1
(1 + D

√
2m)2

( 2
π

log(2N) + 2
)2

,

where log stands for the natural logarithm.
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We prepare the bound on the minimum Euclidean distance of the code Sl,m,D

by a correlation approach.

Theorem 8. With notation as above, and for all phase shifts τ, in the range
0 < τ < N , let

Θ(τ) =
N−1∑

t=0

ωct−c′
t+τ ,

where ct = Tr(f1(γt)) and c′t = Tr(f2(γt)). We then have the bound (l ≥ 4):

|Θ(τ)| ≤ 2l−1[(Df − 1)
√

2m + 1].

Proof. As we have ct = Tr(f1(γt)) and c′t = Tr(f2(γt)), where t ranges between
0 and N − 1 and γ = ξ(1 + 2λ) is of order N = 2l−1(2m − 1).

We obtain that:

Θ(τ) =
N−1∑

t=0

Ψ(f1(γt) − f2(γt+τ )). (29)

By definition of Ψ , we have:

Ψ(f1(γt) − f2(γt+τ )) = Ψ(f3(γt)),

where f3(x) = f1(x) − f2(xγτ ). Note that if f(x) ∈ SD then by Lemma 3
f(xγτ ) ∈ SD since the change of variables x → xγτ does not increase the
weighted degree. Moreover SD is an R-linear space. Thus the polynomial f3(x)
belongs to SD along with f1 and f2. Further, as t ranges between 0 and N − 1,
the set {γt; t = 0, 1, . . . , N − 1} is equal to the product

{ξk1 ; t1 = 0, 1, . . . , 2m − 1} × {(1 + 2λ)k2 ; t = 0, 1, . . . , 2l−1 − 1}.

Thus, in (29), the sum over t is equal to

2l−1−1∑

k2=0

2m−2∑

k1=0

Ψ(f3(ξk1(1 + 2λ)k2)) =
2l−1−1∑

k2=0

2m−2∑

k1=0

Ψ(gk2(ξ
k1)), (30)

where gk2(x) = f3(x(1 + 2λ)k2) and for any k2, gk2 ∈ SD. Applying (4) to each
of the 2l−1 sums:

∣
∣
∣
2m−2∑

t=0

Ψ(fk2(ξ
t))

∣
∣
∣ ≤ (Df − 1)

√
2m + 1.

Thus, the absolute value of (30) can be estimated above by

2l−1[(Df − 1)
√

2m + 1]. (31)

The result follows. ��
We are now in a position to estimate the minimum Euclidean distance dE of our
code Sl,m,D.

Corollary 2. For all integers l ≥ 4 and m ≥ 3 we have

dE ≥ 2l(2m − 2 − D
√

2m).
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9 Biphase Sequences

In this section, we construct biphase sequences using the composition of the
Carlet map and inverse Gray map (see [23] for details).

Let a = a0 + 2a1 + 4a2 ∈ Z8 be 2-adic expansion of a. Define two maps Z1,Z2
from Z8 to Z4 and a map Z from Z8 to Z4 × Z4:

Z(a) = (Z1(a), Z2(a)) = (a1 + 2(a0 + a2), a1 + 2a2),

where a0, a1, a2 ∈ Z2.
For any integer k ≥ 1, extend this map (also denoted by Z) to the following

map from Z
k
8 to Z

k
4 × Z

k
4 :

Definition 1. Let c = (c1, c2, . . . , ck) ∈ Z
k
8 and Z(cj) = (aj , bj) ∈ Z4 × Z4

where aj = Z1(cj) and bj = Z2(cj) for j = 1, 2, . . . , k. Define Z as follows:

Z(c) = (a,b), (32)

where a = (a1, a2, . . . , ak) ∈ Z
k
4 and b = (b1, b2, . . . , bk) ∈ Z

k
4 defined above.

Define the map MSBZ: Z8 → Z2 × Z2 via

MSBZ(u) = (MSB(Z1(u)), MSB(Z2(u))),

in other words
MSBZ(a0 + 2a1 + 4a2) = (a0 + a2, a2),

obtained by taking the most significant bit in each component of Z (which are
elements of Z4).

In this section we consider the periodic sequences c0, c1, . . . of period 2(n−1),
where n = 2m. Let β = 5ξ. Since 52 = 1 in Z8, we have that

βn−1 = (5ξ)n−1 = 5,

and thus β2(n−1) = 1.
Any two polynomials f(X), g(X) ∈ R[X ] are considered equivalent if g(X) =

f(aXα) for some a ∈ Z
∗
8 and α ∈ T ∗. For any positive integer D ≥ 4, let f ∈ SD

modulo the equivalence relation, and set

ct =
{

MSB(Z1(Tr(f(βt)))), if 0 ≤ t < n − 1
MSB(Z2(Tr(f(βt)))), if n − 1 ≤ t < 2(n − 1).

The same DFT technique as above can be applied to the functions
(−1)MSB(Z1(u)), (−1)MSB(Z2(u)), which map the element a0 + 2a1 + 4a2 of Z8
into the respectively (−1)a0+a2 and (−1)a2 . Then the following holds

Lemma 5. Let ω = e2πi/8 be a primitive 8th root of 1, and set set ψk(u) = ωku,
where k is an integer. Then we have that

(−1)MSB(Z1(u)) = μ1ψ1(u) + μ3ψ3(u) + μ5ψ5(u) + μ7ψ7(u),
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(−1)MSB(Z2(u)) = μ5ψ1(u) + μ7ψ3(u) + μ1ψ5(u) + μ3ψ7(u),

where
μ1 =

1
4
(1 + ω − ω2 + ω3), μ3 =

1
4
(1 + ω + ω2 + ω3),

μ5 =
1
4
(1 − ω − ω2 − ω3), μ7 =

1
4
(1 − ω + ω2 − ω3);

and moreover
(|μ1| + |μ3| + |μ5| + |μ7|)2 = 2 +

√
2.

Proof. Recall the Fourier transformation formula on the additive group of Z8.
Let μ be an arbitrary function from Z8 to the complex numbers. Then for any
u ∈ Z8 we have

μ(u) =
7∑

j=0

μjψj(u), where μj =
1
8

7∑

x=0

μ(x)ψj(−x).

In particular, when μ(u) = (−1)MSB(Z1(u)) and x = a0 + 2a1 + 4a2 we have

μj =
1
8

∑

a0,a1,a2

(−1)a0+a2ω−j(a0+2a1+4a2).

Once simplified, we obtain

μj =
1
8
(1 − ω−j)(1 + i−j)(1 + (−1)1−j).

Substituting j = 0, 1, . . . , 7 and simplifying, the result follows (in particular μj =
0, j = 0, 2, 4, 6). The derivation for (−1)MSB(Z2(u)) is analogous and omitted.

��
We now proceed to bound the imbalance.

Theorem 9. With notations as above, we have that

∣
∣
∣

n−2∑

t=0

((−1)MSB(Z1(ut)) + (−1)MSB(Z2(ut)))
∣
∣
∣ ≤ 2(2 +

√
2)1/2(D − 1)

√
2m,

where ut = Tr(f(βt))

Proof. Applying Lemma 5, and changing the order of summation, we obtain that

n−2∑

t=0

((−1)MSB(Z1(ut)) + (−1)MSB(Z2(ut)))

is equal to

n−2∑

t=0

(
(μ1+μ5)(Ψ1(f(βt))+Ψ5(f(βt)))+(μ3+μ7)(Ψ3(f(βt))+Ψ7(f(βt)))

)
, (33)

where Ψk(u) = ψk(Tr(u)) = ψ(kTr(u)). Let Ψ = Ψ1. Then the sum (33) equals
to
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n−2∑

t=0

(
(μ1+μ5)(Ψ(f(βt))+Ψ(5f(βt)))+(μ3+μ7)(Ψ(3f(βt))+Ψ(7f(βt)))

)
. (34)

Recall that

f(βt) =
{

f(ξt), if t is even
5f(ξt), if t is odd

Thus, since 52 ≡ 1 (mod 8), we have

n−2∑

t=0

(Ψ(f(βt)) + Ψ(5f(βt))) =
n−2∑

t=0

(Ψ(f(ξt)) + Ψ(5f(ξt))).

Since 3 × 5 ≡ 7 (mod 8) and 7 × 5 ≡ 3 (mod 8), we have

n−2∑

t=0

(Ψ(3f(βt)) + Ψ(7f(βt))) =
n−2∑

t=0

(Ψ(3f(ξt)) + Ψ(7f(ξt))).

Recalling that
∣
∣
∣

n−2∑

t=0

Ψj(Tr(f(βt)))
∣
∣
∣ ≤ (D − 1)

√
2m (35)

and combining it with (5) the result follows. ��

We now proceed to bound the crosscorrelation.

Theorem 10. With notations as above, and for all phase shifts τ in the range
0 < τ < 2m − 1, let

Θ(τ) =
n−2∑

t=0

((−1)MSB(Z1(ut))−MSB(Z1(vt+τ )) + (−1)MSB(Z2(ut))−MSB(Z2(vt+τ ))),

where ut = Tr(f1(βt)) and vt+τ = Tr(f2(βt+τ )). We then have the bound

|Θ(τ)| ≤ 2(2 +
√

2)(D − 1)
√

2m.

Proof. For i = 1, 2, define

Θi(τ) =
n−2∑

j=0

((−1)MSB(Z1(uj))+MSB(Zi(vj+τ )).

Consider the contribution from Θ1(τ). Applying Lemma 5 to
(−1)MSB(Z1(ut))+MSB(Z1(vt+τ )), we obtain

Θ1(τ) =
7∑

j1=0

7∑

j2=0

μj1μj2

n−2∑

t=0

Ψj1(f1(βt))Ψj2(f2(βt+τ )).
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By definition of Ψ , we have:

Ψj1(f1(βt))Ψj2 (f2(βt+τ )) = Ψ(g(βt)),

where g(X) = j1f1(X) + j2f2(Xξτ ) or g(X) = j1f1(X) + j25f2(Xξτ ).
Note that if f(X) ∈ SD then f(Xβτ ) ∈ SD since, by Lemma 3 the change

of variable X → Xβτ does not increase the weighted degree. Moreover SD is an
R-linear space. Thus the polynomial g(X) belongs to SD along with f1 and f2.
Following the ideas of Theorem 9, we reduce to the sums

∣
∣
∣

n−2∑

t=0

Ψj1(f1(ξt))Ψj2 (f2(ξt+τ ))
∣
∣
∣ =

∣
∣
∣

n−2∑

t=0

Ψ(g(ξt))
∣
∣
∣ ≤ (D − 1)

√
2m. (36)

Applying Lemma 5, we obtain

7∑

j1=0

7∑

j2=0

|μj1μj2 | =
( 7∑

j=0

|μj |
)2

= 2 +
√

2. (37)

Combining it with (36) the result follows. The constant 2 in the Theorem comes
from the contributions of Z1 and Z2. ��
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22. Solé, P., Zinoviev, D.: Low Correlation, High Nonlinearity Sequences for multi-code
CDMA. IEEE Transactions on Information Theory 52, 5158–5163 (2006)
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Abstract. This paper describes efficient methods for finding invalid
digital signatures after a batch verification has failed. We present an
improvement to the basic binary “divide-and-conquer” method, which
can identify an invalid signature in half the time. We also present new,
efficient methods for finding invalid signatures in some pairing-based
batches with low numbers of invalid signatures. We specify these meth-
ods for the Cha-Cheon signature scheme of [5]. These new methods offer
significant speedups for Cha-Cheon batches as well as other pairing-based
signature schemes.
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1 Introduction

When a large number of digital signatures need to be verified, it is sometimes pos-
sible to save time by verifying many signatures together. This process is known as
batch verification. If the batch verification fails, then it is often necessary to iden-
tify the invalid (“bad”) signature(s) that caused the batch to fail. This process
can be time consuming, so batch sizes are typically chosen to be small enough
so that most batches will be expected to pass. “Divide-and-conquer” techniques
have been proposed for identifying invalid signatures in bad batches. These meth-
ods are faster than verifying each signature individually, requiring only O(log2 N)
verifications, where N is the number of signatures in the batch [11].
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Several digital signature schemes have recently been proposed that are based
on bilinear pairings [2,5,6]. This is because the mathematical properties of pair-
ings can be used to design signatures with improved features such as a shorter
length or the ability to derive the public verification key from the signer’s identity
(i.e., identity-based signatures). Identity-based signatures can reduce the number
of bits that need to be transmitted because the signer does not need to transmit
his public key or certificate to the verifier. Some identity-based signatures also
have short signature lengths, making them ideal for bandwidth-constrained envi-
ronments. However, verification of these signatures often involves bilinear pairing
operations, which are relatively expensive to compute. While it may be feasible
to verify a small number of pairing-based signatures, the number of verifica-
tions required to find the invalid signatures in a large batch can be prohibitive,
even with divide-and-conquer methods. Therefore, finding faster methods for
identifying invalid signatures in bad batches is very important for pairing-based
signature schemes.

All pairing-based schemes discussed in this paper are assumed to use bilinear
pairings on an elliptic curve E, defined over Fq, where q is a large prime. G1 and
G2 are distinct subgroups of prime order r on this curve, where G1 is a subset
of the points on E with coordinates in Fq and G2 is a subset of the points on
E with coordinates in Fqd , for a small integer d. The pairing e is a map from
G1 × G2 into Fqd .

In this paper, we present an improvement to the divide-and-conquer method
for finding invalid signatures in a bad batch. We also present new, efficient meth-
ods for finding invalid signatures in some pairing-based batches. We specify these
methods for the Cha-Cheon signature scheme of [5]. However, these methods are
applicable to other pairing-based schemes with similar form, such as BLS short
signatures [2] when all signatures in the batch are applied to the same message
or signed by the same signer.

2 Background

2.1 Batch Verification

Batch verification of digital signatures was introduced by Naccache et al. [10] to
verify modified DSA signatures. Yen and Laih [17] applied batch verification to
a variant of the Schnorr signature and improved its performance by removing a
requirement on small exponents that are generated by the verifier. A similiar test,
called the “small exponents test”, was one of three batch verification techniques
for modular exponentiation given in [1]. The small exponents test has been
applied to several signatures schemes including BLS short signatures [2,4].

In the small exponents test, the verifier chooses a new random value (a “small
exponent”) for each signature in the batch. Each random value is mathemati-
cally combined with its corresponding signature and then all the “randomized”
signatures are combined into two values that should be equal if and only if all
of the signatures in the batch are valid. The random values prevent an attacker
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from inserting invalid signatures that may cancel each other out, resulting in a
batch that appears valid.

Small exponents test:
Input: a security parameter l, a generator g of the group G of prime order q, and
(x1, y1), (x2, y2), . . . , (xn, yn) with xi ∈ Zq and yi ∈ G.
Check: That gxi = yi for all i, 1 ≤ i ≤ n.

1. Choose n random integers r1, . . . , rn in the range [0, 2l − 1].

2. Compute x =
n∑

i=1
xiri and y =

n∏

i=1
yi

ri .

3. If gx = y then accept; else reject.

The probability that this test accepts a batch containing invalid signatures is
at most 2−l [1]. The order of G must be prime to prevent a weakness described
in [3]. Observe that we can set r1 = 1 without any impact on the security of this
test.

2.2 Cha-Cheon Signature Scheme

Cha and Cheon [5] proposed an identity-based signature scheme that can be
constructed with bilinear pairings. We describe their scheme using pairings that
map G1 × G2 into Fqd as defined in Section 1. H(m, U) is a cryptographic hash
that maps a bit string m and a point U ∈ G1 to an integer between 1 and r.

1. Setup phase. The system manager selects an order r point T ∈ G2 and
randomly selects an integer s in the range [1, r − 1]. The manager computes
S = sT . The public system parameters are T and S, which are made available
to anyone that will need to verify signatures. The master secret key is s,
which is known to the system manager only.

2. Extract phase. Each user is given a key pair. The user’s public key, Q, is a
point in G1 that is derived from the user’s identity using a public algorithm.
The user’s private key, C = sQ is computed by the system manager and
given to the user through a secure channel.

3. Signing. To sign a message m, the signer randomly generates an integer t in
the range [1, r − 1] and outputs a signature (U, V ) where
U = tQ
V = (t + H(m, U))C

4. Verification. To verify a signature (U, V ) of message m, the verifier derives
the signer’s public key Q from the purported signer’s identity and computes
h = H(m, U). If e(U + hQ, S) = e(V, T ) then the signature is accepted.
Otherwise, the signature is rejected.

2.3 Fast Batch Verification for the Cha-Cheon Signature Scheme

Cheon et al. [6] proposed a batch signature scheme for a variant of the Cha-Cheon
scheme. Their scheme is partially aggregate, meaning that a portion of each sig-
nature can be combined into into a single short string. Aggregate signatures
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are shorter than batch signatures, but when a batch verification fails they do
not provide enough information to allow identification of the bad signatures.
Cheon et al. claimed that batch verification is not secure for Cha-Cheon and
demonstrated an attack. However, their attack is for a particular batch verifica-
tion scheme and they did not consider the batch verification methods of [1].

By applying the small exponents test to the Cha-Cheon signature we can
obtain an efficient batch verification method that can support verification of
multiple signatures by distinct signers on distinct messages. The verifier obtains
N messages mk, for k = 1 to N , and the signature (Uk, Vk) and signer’s identity
for each message. The verifier derives each public key Qk from the signer’s iden-
tity. The verifier sets r1 = 1 and generates random values rk from [0, 2l − 1], for
k = 2 to N .

The batch is valid if

e

(
N∑

k=1

rk (Uk + H(mk, Uk) · Qk), S

)

= e

(
N∑

k=1

rkVk, T

)

. (1)

If this equality does not hold, then at least one signature in the batch is not
valid.

This batch verification requires only two pairings (and some other relatively
inexpensive operations). This is much more efficient than the aggregate scheme
of [6], which requires N + 1 pairings.

2.4 Divide-and-Conquer Methods

Although many papers have been written on efficient methods for batch veri-
fication, there has been less attention devoted to finding the invalid signatures
after a batch verification fails. One method for identifying invalid signatures was
applied to batches of RSA signatures [9]. It was shown in [15] that this approach
is not secure for RSA signatures. This method is similar to an independently
developed method we present in Section 4.1 for the special case of identifying a
single bad signature. Pastuszak et al. [11] investigated the “divide-and-conquer”
method, in which the set of signatures in a failed batch is repeatedly split into
z smaller sub-batches to verify. We refer to the case where z = 2 as “Simple
Binary Search”. They found that Simple Binary Search is more efficient than
naively testing each signature individually if there are fewer than N/8 invalid
signatures in the batch.

The following recursive algorithm describes the Simple Binary Search on a
batch of N messages and their corresponding digital signatures (called “mes-
sage / signature pairs”). On the initial call to Algorithm SBS(X, V ), X contains
the entire batch of N signatures and V ← true.

Note: verify(X, V ) is a function of a list X = ((m1, s1), . . . , (mn, sn)) of n
message / signature pairs and a flag V . If V = true then the list is verified,
and the function returns true if the verification passes and false otherwise. If
V = false, then no verification is performed and the function returns false.
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Algorithm SBS(X, V ). (Simple Binary Search)
Input: A list X of n message / signature pairs, and a flag V .
Output: A list of all invalid signatures in the batch.

1. If n = 1, then call verify((m1, s1), V ). If the verification passes (true), then
return. Otherwise (false), output (m1, s1) and return.

2. If n �= 1, then call verify(X, V ). If verification passes (true), then return.
Otherwise (false), go to Step 3.

3. Divide the batch X into 2 sub-batches, left(X) with �n/2� signatures, and
right(X) with �n/2	 signatures. Call SBS(left(X), true). If SBS(left(X),
true) or a descendant sub-instance of SBS finds an invalid signature, then
call SBS(right(X), true) otherwise call SBS(right(X), false).

Algorithm SBS can be illustrated with a perfect binary tree. The tree’s root
represents all N message / signature pairs. Each left child represents half of
the message / signature pairs from its parent node, and each right child repre-
sents the other half. The depth of the tree is k + 1, so there are N leaves, each
representing a single message / signature pair. A leaf is called “invalid” if its
corresponding signature is invalid. Note that if the left child of an invalid node
is valid, then its sibling is not verified because it must be invalid.

Costs for Simple Binary Search. If there is only one invalid signature in the
batch, there will be at most 2 verifications for each non-root level of the tree.
Therefore, as shown in [11], the maximum number of verifications to find a single
invalid signature after a batch has failed is 2�log2 N�.

If there are 0 < w < N/2 invalid signatures in a batch of N signatures, the
worst-case cost is 2(2�log2 w� − 1 + w(�log2 N� − �log2 w�)) batch verifications
when the tree is perfectly balanced. If w > N/2 then the worst-case cost is the
same as the cost for w = N/2.

Pastuszak et al. [11] also observed that if the verifier knows in advance that
the batch contains exactly one invalid signature, then the number of verifica-
tions can be reduced to �log2 N�. In the following section, we will show how to
modify Simple Binary Search to find a single invalid signature with �log2 N� ver-
ifications without advance knowledge of the number of invalid signatures. This
modified method also reduces the worst-case cost when there are multiple invalid
signatures.

3 Binary Quick Search

Batch verification tests typically compare two quantities, X and Y , and the
batch is accepted as valid if they are equal. In many batch signature meth-
ods [1,2,3,6,17,18] as well as the batch Cha-Cheon method of Section 2.3, an
equivalent test is to compute A = XY −1 and accept the batch as valid if A = 1.
In most of these signature schemes, XY −1 can be computed at least as quickly
as computing X and Y individually. When this equivalent form of verification is
used, the “A” values can be used to eliminate some of the verifications required
by divide-and-conquer methods.
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For a batch of N signatures, A can be written as the product A1A2 . . . AN .
Let Ā = A1A2 . . . Aj for a sub-batch of j < N signatures labeled 1 through
j. Suppose that A �= 1 and Ā �= 1. Since Ai = 1 if and only if signature i is
valid, we can instantly determine whether or not the remaining signatures j + 1
through N are a valid batch. If A = Ā then Aj+1Aj+2 . . . AN = 1, so signatures
j + 1 through N can be accepted as valid. Otherwise, the set of signatures j + 1
through N must contain at least one invalid signature.

We can modify the Simple Binary Search method of the previous section to
obtain the Binary Quick Search method as follows. The initial verification and
verification of all left(X) sub-batches are replaced by a computation of Ā and
checking whether Ā = 1. Verification of all right(X) sub-batches are replaced
by a comparison of the A values for its left sibling and its parent. This means
that the expensive verification will never be needed for right sub-batches. When
required, the A value for invalid right sub-batches can be efficiently computed
from the A values of its left sibling and its parent.

The Binary Quick Search can be applied to pairing-based batch verification
schemes that are equivalent to accepting the batch as valid if α0 = 1, where

α0 = e

(
N∑

k=1

Bk, P

)

e

(
N∑

k=1

Dk, R

)

. (2)

For example, the Cha-Cheon Batch verification method of Section 2.2, equa-
tion (1), is equivalent to this test, where

Bk = rk (Uk + H(mk, Uk)Qk) ,
Dk = rkVk,
P = S, and
R = −T.

Binary Quick’s worst-case cost (beyond the initial batch verification) is half
that of Simple Binary Search. If there are 0 < w < N/2 invalid signatures in a
batch of N signatures, the worst-case cost for this new method is

2�log2 w� − 1 + w(�log2 N� − �log2 w�)

batch verifications when the tree is perfectly balanced. If w > N/2 then the cost
is the same as the cost for w = N/2.

4 Finding Invalid Signatures in Pairing-Based Batches

The Binary Quick Search method will find invalid signatures in pairing-based
batches using no more than approximately w log2 N verifications. While faster
than previously known methods, Binary Quick Search’s lower bound is expensive
for large N when the verifications require pairing computations. In this section
we propose two alternative methods for finding invalid signatures in pairing-
based batch signature schemes such as the Cha-Cheon verification presented
above, when the verification can be written as in equation (2).
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These new methods make use of the following observation. We can insert
integer multipliers mj,k into equation (2) to obtain

αj = e

(
N∑

k=1

mj,kBk, P

)

e

(
N∑

k=1

mj,kDk, R

)

where m0,k = 1 for all k = 1 to N .
Let I be the set of indices of invalid signatures, and let

Xk = e(Bk, P ) e(Dk, R).

Using the properties of bilinear pairings, we have

αj =
N∏

k=1

X
mj,k

k .

However, Xk = 1 if the kth signature is valid, so we have

αj =
∏

k∈I

X
mj,k

k .

We can identify the set I of invalid signatures by looking for relationships
between the αj ’s. For example, if the kth signature is the only invalid signature
in the batch, then we have α1 = α0

m1,k .
Since we are working in groups of prime order, we are free to choose the values

for the scalars mj,k to maximize the efficiency of our methods. Note that these
scalars can have lengths much smaller than the security parameter l used in
generating the randomizers rk in the initial batch verification.

4.1 Exponentiation Method

We begin with the same initial batch verification as in the Binary Quick Search
method of Section 3, given by equation (2). If α0 = 1 then all signatures in the
batch are accepted as valid. Otherwise, the following algorithm will identify the
bad signatures in the batch:

Input: A bad batch of N message / signature pairs to be verified, along with the
identities of each signer.
Output: A list of the invalid signatures.

1. Perform an computation similar to the batch computation of equation (2),
but first multiply each Bk and Dk by the signature identifier k, (k = 1
through N):

α1 = e

(
N∑

k=1

kBk, P

)

e

(
N∑

k=1

kDk, R

)

.
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Search for an i, 1 ≤ i ≤ N , such that α1 = αi
0.

If such an i is found, then output “the ith signature is invalid” and exit. If
no match is found, then there are at least 2 bad signatures in the batch. Go
to the next step.

2. Compute

α2 = e

(
N∑

k=1

k (kBk), P

)

e

(
N∑

k=1

k (kDk), R

)

.

Search for an (i, j), 1 ≤ i ≤ N , 1 ≤ j ≤ N , i < j such that α2 = αi+j
1 α−ij

0 .
If an (i, j) pair is found, then output “the ith and jth signatures are invalid”
and exit. If no match is found, then there are at least 3 bad signatures in
the batch. Set w ← 3 and go to the next step.

3. Compute

αw = e

(
N∑

k=1

k
(
kw−1Bk

)
, P

)

e

(
N∑

k=1

k
(
kw−1Dk

)
, R

)

. (3)

For all w-subsets of signatures x1, . . . , xw, x1 < x2 < . . . < xw

Check that

αw =
w∏

t=1

(αw−t)
(−1)t−1 pt (4)

where pt is the tth elementary symmetric polynomial in x1, . . . , xw.
Equivalently, we can search for p1, . . . , pw that will solve equation (4). Once
we know p1, . . . , pw, it is easy to solve for the signature identifiers x1, . . . , xw.
If a match is found, then output “signatures x1, . . . , and xw are invalid” and
exit. If no match is found, then there are at least w+1 bad signatures in the
batch. Set w ← w + 1 and repeat Step 3, or stop and switch to a different
method.

Cost. We will assume that the number of invalid signatures, w, is small. We need
to compute each αi, for i = 1 to w, and to then solve equation (4).

To compute each αi in (3), we first need to compute the quantities
N∑

k=1

(
kiBk

)

and
N∑

k=1

(
kiDk

)
. Solinas [14] observed that these two quantities can be computed

for i = 1 to w with only 2w(N − 1) elliptic curve additions (see Appendix B).
Each αi computation will also require 2 pairings and 1 multiplication in Fqd .

For w ≥ 2, each step of this algorithm will require the inverse of αw−2 (other
inverses can be saved from previous steps), so there will be w − 1 inverse com-
putations in Fqd .

Finally, we need to solve equation (4) for x1, . . . , xw, where 1 ≤ xi ≤ N . If
w = 1, then this equation reduces to the discrete logarithm problem in Fqd ,
where the exponents are from an interval of length N . This can be solved using
square-root methods such as Shanks’ baby-step giant-step method [12] with only
2
√

N multiplications in Fqd .
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For w ≥ 2, we can solve equation (4) for x1, . . . , xw with 8
(w−1)!N

w−1 +
O(Nw−2) multiplications in Fqd (see Appendix A).

The approximate upper bound for the total cost to find w invalid signatures
in a bad batch of N signatures using the exponentiation method is 2w pairings,
2w(N − 1) elliptic curve additions, w − 1 inverses in Fqd , and the number of
multiplications in Fqd is 2

√
N for w = 1 or 8

(w−1)!N
w−1 for w ≥ 2.

4.2 Exponentiation with Sectors Method

The exponentiation method of the previous section works efficiently when there
is a single invalid signature, but the number of combinations of potentially invalid
signatures grows quickly as the number of bad signatures increases, even for just
a few invalid signatures. We can slow this growth by dividing the N signatures
in a failed batch into Z sectors of T ≈ N

Z signatures each and modifying the
Exponentiation method of the previous section to identify bad sectors instead of
bad signatures. Once these bad sectors have been identified, we use a variant of
the Exponentiation Method to identify the bad signatures from within the bad
sectors. We call this the Exponentiation with Sectors Method.

We begin with the same initial batch verification of the entire batch as in the
Binary Quick Search method of Section 3, given by equation (2). If the batch
fails, we use the following algorithm to identify the bad signature(s).

Input: A bad batch of N message / signature pairs to be verified, along with the
identities of each signer.
Output: A list of the invalid signatures.
Stage 1. Divide the N signatures into Z sectors of T ≈ N

Z signatures each. Label
the sectors s1 through sZ . This stage will identify the bad sectors.

1. Compute

β1 = e

⎛

⎝
Z∑

j=1

j

⎛

⎝
∑

k∈sj

Bk

⎞

⎠, P

⎞

⎠ e

⎛

⎝
Z∑

j=1

j

⎛

⎝
∑

k∈sj

Dk

⎞

⎠, R

⎞

⎠ .

Search for an i, 1 ≤ i ≤ Z, such that β1 = αi
0. If such an i is found, then

Sector i is the only bad sector. Set v ← 1 and go to Step 1 of Stage 2. If no
match is found, then there are at least 2 bad sectors in the batch. Set v ← 2
and go to the next step.

2. Compute

βv = e

⎛

⎝
Z∑

j=1

j

⎛

⎝jv−1
∑

k∈sj

Bk

⎞

⎠, P

⎞

⎠ e

⎛

⎝
Z∑

j=1

j

⎛

⎝jv−1
∑

k∈sj

Dk

⎞

⎠, R

⎞

⎠ . (5)

Search for a v-subset of sectors s1, . . . , sv, s1 < s2 < . . . < sv

such that

βv =
v∏

t=1

(βv−t)
(−1)t−1 pt (6)
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where β0=α0 and pt is the tth elementary symmetric polynomial in s1, . . . , sv.
If a v-subset is found, then go to Step 1 of Stage 2. If no match is found,
then there are at least v + 1 bad sectors. Set v ← v + 1 and repeat Step 2,
or stop and switch to a different method.

Stage 2. Now v bad sectors of T signatures each have been identified. Therefore,
there are at least v invalid signatures in the batch. Set w ← v. Stage 2 will
identify these invalid signatures.

1. Label the signatures in the bad sectors from 1 to vT . Compute γi for i = 1
to w as follows:

γi = e

(
vT∑

k=1

kiBk, P

)

e

(
vT∑

k=1

kiDk, R

)

. (7)

Compute the inverses of α0 (if w is even) and γw−2, γw−4, . . . Search for a
w-subset of signatures x1, . . . , xw, x1 < x2 < . . . < xw such that

γw =
w∏

t=1

(γw−t)
(−1)t−1 pt (8)

where γ0=α0 and pt is the tth elementary symmetric polynomial in x1, . . . , xw.
If a match is found then output the list of w invalid signatures and exit. If no
match is found, then there are more that w invalid signatures in the batch.
Set w ← w + 1 and go to the next step.

2. Compute γw as in equation (7) with i = w. Compute the inverses of γ’s as
needed and search for a w-subset of signatures x1, . . . , xw, x1 < x2 < . . . <
xw to solve equation (8). If a match is found then output the list of w invalid
signatures and exit. If no match is found, then there are more than w invalid
signatures in the batch. Set w ← w + 1 and repeat this step.

Cost. To simplify the cost computation, we will assume that there are w bad
sectors and exactly 1 invalid signature per sector (w = v), which is the worst case.
This is a reasonable assumption because batch verification is most useful when
most batches are valid. When a batch does fail, the number of invalid signatures
is expected to be very small (unless the batch was intentionally flooded with bad
signatures). In most cases, there is unlikely to be more than one bad signature
in any given sector.

The Stage 1 cost to identify w bad sectors in a batch with Z Sectors will be
the same as the cost for the exponentiation method of Section 4.1 to identify w
bad signatures in a batch of Z signatures. This cost is 2w pairings, 2w(Z − 1)
elliptic curve additions, w − 1 inverses in Fqd and the number of multiplications
in Fqd is 2

√
Z for w = 1 or 8

(w−1)!Z
w−1 for w ≥ 2.

In Stage 2, Step 1, we need to identify w invalid signatures in w distinct
bad sectors of T = N

Z signatures each. (We are assuming w = v so we will be
done after Step 1.) There are wT signatures in the w bad sectors. The costs for
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equation (7) are 2w(wT − 1) elliptic curve additions to compute
vT∑

k=1
kiBk and

vT∑

k=1
kiDk for i = 1 to w (see Appendix B), and 2w pairings to compute the γi’s.

For equation (8), we will need to compute �w
2 	 inverses in Fqd .

Finally, we need to solve equation (8) for x1, . . . , xw, where 1 ≤ xi ≤ wT .
If w = 1, then this equation reduces to the discrete logarithm problem in Fqd ,
where the exponents are from an interval of length T . This can be solved using
square-root methods such as Shanks’ baby-step giant-step method [12] with only
2
√

T multiplications in Fqd .
For w ≥ 2, we can solve equation (8) for x1, . . . , xw with 8

(w−1)!(wT )w−1

multiplications in Fqd (see Appendix A).
The approximate upper bound for the total cost for both stages of the Ex-

ponentiation with Sectors method to identify w bad signatures in a batch of N
signatures (assuming exactly one bad signature per sector) is 4w pairings, 2w(Z+
wN
Z −2) elliptic curve additions, �1.5w	−1 inverses in Fqd and the number of mul-

tiplications in Fqd is: 2
(
Z1/2+

(
N
Z

)1/2
)

for w=1 and 8
(w−1)!

(
Zw−1 +

(
wN
Z

)w−1
)

for w ≥ 2.
To minimize the cost, we need to select the number of sectors, Z, to balance the

work in Stage 1 and Stage 2. We can minimize the work for the most likely case,
w = 1, by choosing Z =

√
N sectors. In this case the total cost is 4w pairings,

2w((w + 1)
√

N − 2) elliptic curve additions, �1.5w	 − 1 inverses in Fqd and the

number of multiplications in Fqd is 4(N)1/4 for w = 1 and 8(ww−1+1)
(w−1)! N (w−1)/2

for w ≥ 2.

5 Performance

Table 1 summarizes the approximate upper bound for the number of opera-
tions to identify a small number of invalid signatures in a bad batch for each of
the three new methods presented in this paper, and compares them to the cost
of Simple Binary Search and to the cost of verifying each signature individu-
ally. For each batch method, we have omitted the cost of the initial verification
of the entire batch. Note that other computational techniques exist that may
lower these costs in some cases, such as techniques for computing products of
pairings [8].

As shown in Table 1, Binary Quick Search is twice as fast as the worst case
for Simple Binary Search. The Exponentiation and Sector methods use fewer
pairings than Binary Quick Search, but the number of multiplications in F (qd)
for these methods increases proportionally to a power of the batch size. For very
large batch sizes, Binary Quick Search will always be the best method. However,
for reasonably sized batches of mostly valid signatures, the Exponentiation or
Sector method will often be the most efficient.
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Table 1. Number of Operations

Method Pairings Inverses EC additions Multiplications
in Fqd in Fqd

N individual 2N� 0 0 0
Simple Binary 4w log2 N 0 0 0
Binary Quick 2w log2 N 0 0 0

Exponentiation
w = 1 2 0 2(N − 1) 2

√
N

w ≥ 2 2w w − 1 2w(N − 1) 8
(w−1)!N

w−1

√
N Sectors

w = 1 4 0 4(
√

N − 1) 4N1/4

w ≥ 2 4w �1.5(w)	 − 1 2w((w + 1)
√

N − 2) 8(ww−1+1)
(w−1)! N (w−1)/2

Table 2. Number of multiplies in Fq, where r and q are 160-bit values and d = 6

Batch Size
w Method 16 64 256 1024 4096

N individual 3.18·1005 1.27·1006 5.08·1006 2.03·1007 8.13·1007

0 Initial Verify 6.29·1004 1.99·1005 7.45·1005 2.93·1006 1.17·1007

Simple Binary 1.46·1005 2.19·1005 2.92·1005 3.65·1005 4.38·1005

1 Binary Quick 7.30·1004 1.09·1005 1.46·1005 1.82·1005 2.19·1005

Exponent. 〈1.87·1004〉 〈1.99·1004〉 〈2.43·1004〉 4.17·1004 1.10·1005
√

N Sectors 3.67·1004 3.69·1004 3.73·1004 〈3.82·1004〉 〈3.97·1004〉

Simple Binary 2.55·1005 4.01·1005 5.47·1005 6.93·1005 8.39·1005

2 Binary Quick 1.28·1005 2.01·1005 2.74·1005 3.47·1005 4.20·1005

Exponent. 〈3.91·1004〉 〈4.70·1004〉 〈7.85·1004〉 2.04·1005 7.08·1005
√

N Sectors 7.48·1004 7.67·1004 8.07·1004 〈8.85·1004〉 〈1.04·1005〉

Simple Binary 3.28·1005 5.47·1005 7.66·1005 9.85·1005 1.20·1006

3 Binary Quick 1.64·1005 2.74·1005 3.83·1005 〈4.92·1005〉 〈6.02·1005〉
Exponent. 〈7.12·1004〉 3.05·1005 4.00·1006 6.30·1007 1.01·1009

√
N Sectors 1.20·1005 〈1.50·1005〉 〈2.67·1005〉 7.32·1005 2.58·1006

Simple Binary 4.01·1005 6.93·1005 9.85·1005 1.28·1006 1.57·1006

4 Binary Quick 2.01·1005 〈3.47·1005〉 〈4.92·1005〉 〈6.38·1005〉 〈7.84·1005〉
Exponent. 〈1.56·1005〉 5.32·1006 3.36·1008 2.15·1010 1.37·1012

√
N Sectors 2.30·1005 8.14·1005 5.48·1006 4.28·1007 3.41·1008

� Plus N point multiplications by a scalar the size of the group order r.
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Tables 2 and 3 compare methods for finding invalid signatures in bad batches
for Cases A and C of [7]. In Case A, the group order r is a 160-bit value, the
elliptic curve E is defined over Fq, where q is a 160-bit value, and the embedding
degree d = 6. In Case C, the group order r is a 256-bit value, q is a 256-bit value,
and the embedding degree d = 12. All costs are given in terms of the number of
multiplications (m) in Fq using the following estimates from [7]:

– For Case A, 1 pairing = 9120m, 1 multiplication in Fq6 = 15m, 1 inverse
in Fq6 = 44m (assuming 1 inverse in Fq = 10m), 1 elliptic curve addition
= 11m, and an elliptic point multiplication by a 160-bit value is 614m and by
an 80-bit value is 827m. The cost of a pair of elliptic point multiplications by
160-bit and 80-bit integers simultaneously is 2017m, using the Joint Sparse
Form [13].

– For Case C, 1 pairing = 43, 703m, 1 multiplication in Fq12 = 45m, 1 inverse
in Fq12 = 104m, 1 elliptic curve addition = 11m, and an elliptic point multi-
plication by a 256-bit value is 2535m and by an 128-bit value is 1299m. The
cost of a pair of elliptic point multiplications by 256-bit and 128-bit values
simultaneously is 3225m, using the Joint Sparse Form.

Table 3. Number of multiplies in Fq , where r and q are 256-bit values and d = 12

Batch Size
w Method 16 64 256 1024 4096

N individual 1.44·1006 5.76·1006 2.30·1007 9.21·1007 3.68·1008

0 Initial Verify 1.58·1005 3.76·1005 1.24·1006 4.72·1006 1.86·1007

Simple Binary 6.99·1005 1.05·1006 1.40·1006 1.75·1006 2.10·1006

1 Binary Quick 3.50·1005 5.24·1005 6.99·1005 8.74·1005 1.05·1006

Exponent. 〈8.81·1004〉 〈8.95·1004〉 〈9.45·1004〉 〈1.13·1005〉 1.83·1005
√

N Sectors 1.75·1005 1.76·1005 1.76·1005 1.77·1005 〈1.79·1005〉

Simple Binary 1.22·1006 1.92·1006 2.62·1006 3.22·1006 4.02·1006

2 Binary Quick 6.12·1005 9.61·1005 1.31·1006 1.66·1006 2.01·1006

Exponent. 〈1.81·1005〉 〈2.01·1005〉 〈2.78·1005〉 5.89·1005 1.83·1006
√

N Sectors 3.54·1005 3.59·1005 3.69·1005 〈3.88·1005〉 〈4.27·1005〉

Simple Binary 1.57·1006 2.62·1006 3.67·1006 4.72·1006 5.77·1006

3 Binary Quick 7.87·1005 1.31·1006 1.84·1006 〈2.36·1006〉 〈2.88·1006〉
Exponent. 〈3.09·1005〉 1.00·1006 1.21·1007 1.89·1008 3.02·1009

√
N Sectors 5.54·1005 〈6.41·1005〉 〈9.89·1005〉 2.38·1006 7.91·1006

Simple Binary 1.92·1006 3.32·1006 4.72·1006 6.12·1006 7.52·1006

4 Binary Quick 9.61·1005 〈1.66·1006〉 〈2.36·1006〉 〈3.06·1006〉 〈3.76·1006〉
Exponent. 〈5.97·1005〉 1.61·1007 1.01·1009 6.44·1010 4.12·1012

√
N Sectors 9.50·1005 2.70·1006 1.67·1007 1.29·1008 1.02·1009
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To indicate the best method for each batch size and number of invalid signatures,
the table entry with the lowest cost is given in brackets.

The results in Table 2 for Case A show that the Exponentiation method is the
most efficient method when there are one or two invalid signatures in a batch of
up to 256 signatures, with costs that are as much as 83% lower than the cost of
Binary Quick Search and 92% lower than Simple Binary Search. For batches of
1024 to 4096 signatures with one or two invalid signatures, the Sector method
with

√
N sectors is the most efficient, with costs that are up to 82% lower cost

than Binary Quick Search and 91% lower than Simple Binary Search. If the batch
size is large enough, Binary Quick Search will be the most efficient method, and
the size at which this happens is smaller if there are more invalid signatures
in the batch. However, when there are 4 invalid signatures, the Exponentiation
method is still 22% faster than Binary Quick Search, and 61% faster than Simple
Binary, for batches of 16 signatures.

The results in Table 3 for Case C show that the benefit of using the Expo-
nentiation and Sector methods can be even more significant at higher security
levels. For example, the cost of the Exponentiation or Sector methods are up to
87% less than the cost of Binary Quick Search, and up to 94% less than the cost
of Simple Binary Search, for batches with up to 4096 signatures in which one or
two signatures are invalid.

6 Conclusion

We have presented two new methods for identifying invalid signatures in pairing-
based, batch signature schemes with low numbers of invalid signatures, and have
analyzed their performance. These methods are applicable to batch verification
schemes employing small exponent techniques such as the Cha-Cheon scheme
described here, or BLS [2] short signatures when all signatures in the batch are
applied to the same message or signed by the same signer. These new methods
offer significant speedups for such schemes.

We have presented Binary Quick Search, an improvement to previous “divide-
and-conquer” methods. This method is better suited for identifying larger num-
bers of invalid signatures, especially in large batches, than our other methods,
and has application to batch signature schemes that do not use pairings, includ-
ing [1,3,17].
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A Solving Equations (4), (6) and (8) Using the Factor
Method

In equation (4) of Section 4.1, and equations (6) and (8) of Section 4.2, we need
to solve an equation of the form

B =
w∏

t=1

(At)
pt (9)
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where pt is the tth symmetric polynomial in x1, x2, . . . , xw, At ∈ Fqd and

1 ≤ xi ≤ M.

For equation (4): B = αw, M ← N and At = (αw−t)
(−1)t−1

for t = 1 to w.
For equation (6): B = βw, M ← Z and At = (βw−t)

(−1)t−1

for t = 1 to w.
For equation (8): B = γw, M ← wN

Z and At = (γw−t)
(−1)t−1

for t = 1 to w.

A.1 w = 2: Factor Method

When w = 2, equation (9) reduces to

B = A
(x1+x2)
1 A

(x1x2)
2 . (10)

If we raise both sides of equation (10) to the 4th power and observe that 4x1x2 =
(x2 + x1)

2 − (x2 − x1)
2, equation (10) becomes

B4 (A−4
1 )(x2+x1) (A2

−1)
(x2+x1)2 = (A2

−1)
(x2−x1)2

.

This can be written as

δ0 (δ1)
s (δ2)

(s)2 = (δ2)
(m)2 (11)

where
δ0 = B4, δ1 = A1

−4, δ2 = A2
−1

s = x2 + x1, m = x2 − x1

1 ≤ s ≤ 2M − 1

1 ≤ m ≤ M − 1.

To solve equation (11), the M −1 possible values for the right hand side of the
equation, RHS(i), are computed and stored in a search tree. Then the 2M − 1
values for the left side, LHS(i), are computed and compared, each in log M time,
with the stored values. If a match is found, the values x1 and x2 can be easily
computed. To compute the values for the right hand side

1. Set RHS1 = δ2 and compute δ2
(2).

2. For 2 ≤ i < M , compute
(a) (δ2)

(2i−1) = (δ2)
(2i−3) (δ2)

(2) and

(b) RHS(i) = (δ2)
(i)2 = (δ2)

(i−1)2 (δ2)
(2i−1).

Computing the values for the left hand side of equation (11) is performed in two
stages. In the first stage, the values (δ2)(i)

2
, which have already been computed

for the right hand side, are re-used to reduce the number of multiplications.
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Stage 1:

1. Compute ζ3 = δ0 δ
(3)
1 , lookup δ

(3)2

2 and compute LHS3 = ζ3 δ
(3)2

2 .
2. For 4 ≤ i < M , compute

(a) ζ(i) = ζ(i−1) δ1,

(b) lookup δ
(i)2

2 and compute LHS(i) = ζ(i) δ
(i)2

2 .

Stage 2:

1. For M ≤ i < 2M compute
(a) ζ(i) = ζ(i−1) δ1,
(b) (δ2)(2i−1) = (δ2)(2i−3) (δ2)(2),
(c) (δ2)(i)

2
= (δ2)(i−1)2 (δ2)(2i−1) and

(d) LHS(i) = ζ(i) (δ2)(i)
2
.

Cost.
Computing the values for the right hand side requires 2M multiplications. Com-
puting the values for the left hand side requires 2M multiplications for Stage 1
and 4M for Stage 2. The total cost of using the Factor method for w = 2 is no
more than 8M multiplications in Fqd .

A.2 w ≥ 3: Iterative Use of the Factor Method

When w ≥ 3, equation (9) can be solved by reducing the problem to the w = 2

case for each of the
(

M − 2
w − 2

)
possible combinations of the values of x3, . . . , xw.

We can express pt, the tth elementary symmetric polynomial in x1, . . . , xw as

pt = (x1x2)ut−2 + (x1 + x2)ut−1 + ut.

If 0 ≤ i ≤ w − 2 then ui is the ith elementary symmetric polynomial in x3, . . . , xw

and ui = 0 otherwise. Equation (9) becomes

B =
w∏

t=1

(At)
((x1x2) ut−2+(x1+x2) ut−1+ ut).

Rewriting this equation in the form of equation (11)

B4
w−2∏

t=1

(At)
−4ut

︸ ︷︷ ︸
δ0

⎛

⎜
⎜
⎜
⎜
⎝

w−1∏

t=1

(At)
−4ut−1

︸ ︷︷ ︸
δ1

⎞

⎟
⎟
⎟
⎟
⎠

(s) ⎛

⎜
⎜
⎜
⎜
⎝

w∏

t=2

(At)
−ut−2

︸ ︷︷ ︸
δ2

⎞

⎟
⎟
⎟
⎟
⎠

(s)2

=

⎛

⎜
⎜
⎜
⎜
⎝

w∏

t=2

(At)
−ut−2

︸ ︷︷ ︸
δ2

⎞

⎟
⎟
⎟
⎟
⎠

(m)2

.

The Factor method can be used with the values δ0, δ1 and δ2 as shown above,
with 1 ≤ s ≤ 2x3 − 3 and 1 ≤ m ≤ x3 − 1.



Finding Invalid Signatures in Pairing-Based Batches 51

Cost.

The Factor method is used a maximum of
(

M − 2
w − 2

)
times to test equation (9).

Therefore, for w ≥ 2, the cost of all calls to the Factor method is bounded by

(
M − 2
w − 2

)
8M <

8
(w − 2)!

Mw−1

multiplications in Fqd .

We can establish a tighter upper bound if we consider the fact that x1 and
x2 must lie in the range [1, x3 − 1] instead of [1, M ]. The number of times the

Factor method is called for any given value of x3 is no more than
(

M − x3
w − 3

)
.

Therefore, excluding the cost of computing the δ’s, the cost of the using the
Factor method for w ≥ 3 is

8
M−(w−3)∑

x3=3

(
M − x3
w − 3

)
(x3 − 1)

≤ 8
(w − 3)!

M−w+3∑

x3=3

x (M − x)w−3 (12)

multiplications in Fqd .
The most significant term of (12) can be written as

8
(w − 3)!

Mw−1

⎛

⎝
w−2∑

j=1

(−1)j−1
(

w − 3
j − 1

) (
1

j + 1

)
⎞

⎠ .

However, by an identity given in [16], we have

w−2∑

j=1

(−1)j−1
(

w − 3
j − 1

) (
1

j + 1

)
=

1
(w − 1)(w − 2)

.

Therefore, the most significant term of (12) becomes

8
(w − 1)!

Mw−1. (13)

Cost of computing the δ’s. We also need to compute the different δ0, δ1 and δ2
required for each use of the Factor method.

δ0 = B4
w−2∏

t=1

(A−4
t )

ut
, δ1 =

w−2∏

t=0

(A−4
t+1)

ut
, δ2 =

w−2∏

t=0

Aut
t+2.
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To compute δ0 in the following algorithm, all possible values of each (A−4
t )

ut are
computed and combined to produce the value of δ0 for each possible combination
of the values x3, . . . , xw.

Next, all possible values of (A−4
t )

ut are computed for each t. Since the max-

imum value of each ut is less than
(

w − 2
t

)
M t, we can compute all possible

values of (A−4
t )

ut in
(

w − 2
t

)
M t multiplications.

Finally, we compute the δ’s. We can compute all possible values of δ0 by
computing all possible values for η1 = B4(A−4

1 )
u1 and then computing all pos-

sible values for ηt = B4
t∏

z=1
(A−4

z )uz , for 2 ≤ t ≤ w − 2, from ηt−1 and (A−4
t )

ut .

Since there are less than
(

M
w − 2

)
possible values of x3, . . . , xw, we can compute

δ0 = ηw−2 with (w − 3)
(

M
w − 2

)
multiplications.

The method computes δ1 and δ2 in a similar fashion. The total number of
multiplications required to compute the δ’s is bounded by

3

(
w−2∑

t=1

(
w − 2

t

)
M t+(w−3)

(
M

w−2

))

<3 (M+1)w−2+
3 (w−3)
(w−2)!

Mw−2. (14)

The total cost to iteratively use the Factor Method is the sum of equations (13)
and (14), but this cost is dominated by equation (13). Therefore, the approximate
number of multiplications in Fqd to solve equation (9) is

8
(w − 1)!

Mw−1 (15)

for w ≥ 2.

B Faster Method for Computing Sums of the Form
N∑

k=1
(ktPk)

Let Pk, for k = 1 to N , be points on an elliptic curve. We want to compute

SUMt =
N∑

k=1

(
ktPk

)
(16)

for t = 1 to w. Computing these values in the obvious way would require w(N−1)
elliptic scalar multiplications by a log2 N bit-integer and w(N −1) elliptic curve
additions. We show a method due to Solinas [14] to compute these w quantities
with only w(N − 1) elliptic curve additions.
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First, we compute

Ut =
N∑

k=1

(
t + k − 1

t

)
Pk

for t = 1 to w. These w values can be computed from the Pk’s as follows:

Vk ← Pk for 1 ≤ k ≤ N
For t = 0 to w

For k from N − 1 downto 1 do
Vk ← Vk + Vk+1

Next k
Ut ← V1

Next t

The cost of this algorithm is w(N − 1) elliptic curve additions. (We don’t count
the cost for the first time through the loop because the computations for t = 0
can be computed during the initial batch verification.)

We can now compute SUMt (equation (16)) from U1, . . . , Ut:

SUMt =
t∑

k=1

(−1)t−k(k!)st,kUk (17)

where the st,k’s are the Stirling numbers of the second kind. We can compute
SUMt, for t = 1 to w, with only O(w2) operations:

SUM1 ← U1
s0 ← 0
s1 ← 1
For i = 2 to w

si ← 0
Next i
For t = 2 to w

SUMt ← 0
For k from t downto 1 do

sk ← sk−1 + ksk

SUMt ← k
(
(−1)t−kskUk + SUMt

)

Next k
Return SUMt

Next t

For large N and small w, we can ignore the O(w2) operations. Therefore, the
total cost of computing SUMt, for t = 1 to w, is approximately w(N −1) elliptic
curve additions.
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Abstract. This paper shows how to forge a time-stamp which the latest
version of Adobe’s Acrobat and Acrobat Reader accept improperly. The
target signature algorithm is RSASSA-PKCS1-v1 5 with a 1024-bit pub-
lic composite and the public key e = 3, and our construction is based
on Bleichenbacher’s forgery attack presented in CRYPTO 2006. Since
the original attack is not able to forge with these parameters, we used
an extended attack described in this paper. Numerical examples of the
forged signatures and times-stamp are also provided.
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1 Introduction

In the rump session of CRYPTO 2006, held on August 2006, Bleichenbacher pre-
sented a new forgery attack [6] against the signature scheme RSASSA-PKCS1-
v1 5 (PKCS#1v1.5 for short) defined in PKCS#1 [13] and RFC 3447 [16], a
cryptographic standard developed and maintained by RSA Laboratories [13].
The attack allows an adversary to forge a valid signature on an (almost) arbi-
trary message in a very simple way, if an implementation of the signature scheme
is loose, namely, a format check in the verification is not adequate. In fact, sev-
eral implementations of PKCS#1v1.5 including OpenSSL, Firefox2 and Sun’s
JRE (Java Runtime Environment) library had this vulnerability. In response to
Bleichenbacher’s attack, US-CERT published a vulnerability note on September
2006 [7], and these implementations resist the attack now.

Since Bleichenbacher’s presentation was limited to the case when the bit-
length of the public composite n (denoted by |n|) is 3072 and the public exponent
e is 3, applicability to other parameters was unclear. Though Tews showed the
applicability of the extended forgery attack when |n| = 1024 and e = 3 [19],
other cases such as e = 17, 65537 has not been discussed yet.

In this paper, we analyze Bleichenbacher’s forgery attack and show applica-
ble composite sizes for given exponents. Then we propose the extended attack
with assuming the same implementational error, which is a generalization of the

S.D. Galbraith (Eds.): Cryptography and Coding 2007, LNCS 4887, pp. 54–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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original attack and Tew’s extended attack. For fixed n and e, the success proba-
bility of the proposed attack is 2(|n|−15)/e−353 in the random oracle model. When
|n| = 1024 and e = 3, the proposed attack succeeds the forgery with probabil-
ity 2−16.6 which coincides the Tew’s experiment [19]. Note that the preliminary
version of the proposed attack was published in [9].

In the proposed attack, the success probability of a forgery on the chosen
message is 2(|n|−15)/e−353. However, when the message is ‘redundant’, namely,
it includes supplementary data (such as a name of used tool, a name of author,
date) besides a body of the message and whose size is large enough, the adver-
sary can forge on the chosen message by changing the redundant part. As an
example of this scenario, we show how to forge a time-stamp defined in RFC
3161 [4] (in which 64-bit nonce space is available) with our proposed attack. Fi-
nally and most importantly, we check some verification client programs whether
they accept forged time-stamps by (1) the proposed attack and (2) a variant of
Bleichenbacher’s attack by Oiwa et al. [11]., As a result, a forged time-stamp
by the proposed attack embedded in a PDF (Portable Document Format) file
was improperly accepted by the latest version of Adobe’s Acrobat and Acrobat
Reader 1.

The rest of this paper is organized as follows: in section 2, Bleichenbacher’s
forgery attack against PKCS#1v1.5 and analytic results are described. Then the
extended attack is proposed in section 3, and its application to the time-stamp
scheme is described in section 4. Some numerical examples of forged signatures
are in the appendix.

2 Bleichenbacher’s Attack

This section describes Bleichenbacher’s forgery attack [6] against RSASSA-
PKCS1-v1 5 (PKCS#1v1.5 for short) with the loose implementation. Let n be
an RSA composite whose size is denoted by |n| (in bit). In the followings, a
variable in the typewriter font denotes an octet string and a variable in the
Roman font denotes an integer. Two variables in the same letter correspond to
each other, namely, A is an octet representation of an integer A, vice versa.

2.1 RSASSA-PKCS1-v1 5

Let us introduce the signature scheme RSASSA-PKCS1-v1 5 defined in PKCS#1
[13]. For a given public composite n (a product of two large primes with same
size) such that |n| is a multiple of 8, a message m (to be signed) is encoded to
an integer M , an integer representation of an octet string M defined by

M = 00||01||PS||00||T||H, (PKCS#1v1.5 message format)

where PS is an octet string with ff such that |M| = |n| (and |PS| ≥ 64), T is an
identifier of the signature scheme and the hash function (Table 1), and H is an
1 The authors have already submitted the vulnerability report to a governmental or-

ganization.
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Table 1. Identifiers of the algorithm and the hash function [13]

Hash Function Length (bit) Octet String

MD2 144 3020300c06082a864886f70d020205000410
MD5 144 3020300c06082a864886f70d020505000410

SHA-1 120 3021300906052b0e03021a05000414 (= TSHA1)

SHA-256 152 3031300d060960864801650304020105000420
SHA-384 152 3041300d060960864801650304020205000430
SHA-512 152 3051300d060960864801650304020305000440

octet representation of the hash value H(m). Then, a signature s is generated
by s = Md mod n for the signer’s secret integer d.

On input the original message m, its signature s and the signer’s public expo-
nent e, a verifier obtains an octet string M′ representing an integer M ′ = se mod n
and checks whether it satisfies the format

M′ = 00||01||PS||00||T||H′.

Then the verifier obtains a value H ′, an integer representation of the octet string
H′, and compares whether H ′ = H(m). If this equation holds, the signature is
accepted by the verifier.

In the implementation level, a part of the format check is sometimes inade-
quate by some reasons. For example, when an octet string

00||01||PS||00||T||H′||garbage.

(a garbage data is followed) is obtained by a verifier as a decoded message, it
should be rejected because it is in the illegal format. However, some implemen-
tations accept the string because they do not check the number of ff and they
stop the scan at the end of H’ (namely, they do not notice the existence of the
garbage). Such loose implementation is the target of Bleichenbacher’s forgery
attack described in the next subsection.

2.2 Outline of Bleichenbacher’s Attack

Next, let us introduce Bleichenbacher’s forgery attack [6] against PKCS#1 v1.5.
Here we assume that the hash function SHA-1 and parameters |n| = 3072 and
e = 3 are used [8]. In the attack, an adversary chooses a message m̄ with arbitrary
bit-length such that

a = 2288 − (T × 2160 + H(m̄))

is divisible by 3, where T is an integer representation of the octet string TSHA1
(as in Table 1). Note that such m̄ can be obtained by generating m̄ randomly (3
trials are required on average). The adversary also computes two integers

g = a2/3 × 21087 − a3/27 × 2102, s̄ = 21019 − a/3 × 234.
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Observe that

s̄e = (21019 − a/3 × 234)3

= 23057 − a × 22072 + a2/3 × 21087 − a3/27 × 2102

= 23057 − 22360 + T × 22232 + H(m̄) × 22072 + g

= (2985 − 2288 + T × 2160 + H(m̄)) × 22072 + g.

Since an integer 2985 − 2288 + T × 2160 + H(m̄) corresponds to an octet string
00||01||ff...ff||00||T||H′ (the number of ff is different from that of the original
PS), s̄ is a forged signature on the message m̄, if an implementation of the
verification ignores the number of ff and the garbage g. In the forgery, the
adversary only requires to compute H(m̄), a and s̄. This is why the attack is
called “the pencil and paper attack” [6]. Note that the adversary does not use
modulus computations and thus integers n, d are not required in the forgery.

A numerical example of Bleichenbacher’s forgery attack with a 3072-bit com-
posite and e = 3 is shown in Table 7 in appendix A.

2.3 Analysis

This subsection analyzes Bleichenbacher’s forgery attack with general parame-
ters. Only SHA-1 is considered in the following, however, similar attacks and
analysis can be easily obtained for other hash functions. For simplicity, we con-
sider the public composite n with arbitrary length (rather than a multiple of 8).

Firstly, we consider the case with general n but e = 3. Since the padding
00||TSHA1 is 128-bit and the hash value is 160-bit, we use the same a as in the
original attack, namely a = 2288 − (T × 2160 + H(m̄)) such that 3|a. Let

s̄(α, β) = 2α − a/3 × 2β ,

be a forged signature. Then, we have

s̄(α, β)3 = 23α − a × 22α+β + g(α, β)

for the garbage g(α, β) = a2/3×2α+2β −a3/27×23β. Since s̄(α, β)3 should be in
the PKCS#1v1.5 format, we have 3α = |n|−15, namely, α = (|n|−15)/3 and |n|
should be divisible by 3. On the other hand, since the garbage should be smaller
than 22α+β, we have 2α+β > 576+α+2β−log2 3, namely, β < |n|/3−581+log2 3.
By substituting β ≥ 0 in this inequality, we have a condition on n that

|n| > 1743 − 3 log2 3 = 1738.24....

Consequently, Bleichenbacher’s attack with e = 3 is applicable to the case with
|n| ≥ 1739 with |n| is divisible by 3. More precisely, |n| can be parameterized by
|n| = 3k for k ≥ 580 and β is in a form β = 8� + 2 (0 ≤ � ≤ 55) since PS is a
repetition of the octet string ff.

Next, let us discuss with general n and e. Similar to the above discussion, we
set s̄(α, β) = 2α − a/e × 2β for a = 2288 − (T × 2160 + H(m̄)) such that e|a and
α = (|n| − 15)/e. Then, we have

s̄(α, β)e = 2eα − a × 2(e−1)α+β + g(α, β)
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for the garbage g(α, β) = a2(e − 1)/(2e)× 2(e−2)α+2β + . . . . By the same discus-
sion, we have conditions on n that

|n| > 576e + 15 − e log2

(
2e

e − 1

)

and |n| − 15 is divisible by e. Also, we have 0 ≤ β < |n|/3 − 581 + log2 3 and
β ≡ 2 (mod 8) on β. Especially, we have |n| = 17k + 15 (k ≥ 575) for e = 17,
and |n| = 65537k+15 (k ≥ 1061) for e = 65537. Consequently, Bleichenbacher’s
attack for general e is far from feasible. Even if e = 3, Bleichenbacher’s attack
cannot be applicable to 1024-bit (since 1024 is smaller than 1739) or 2048-bit
composites (since n − 15 = 2033 is not divisible by 3, 17, 65537).

2.4 Oiwa et al.’s Variant

Recently, Oiwa et al. proposed a variant of Bleichenbacher’s attack [11]. In the
message format 00||01||PS||00||T||H, T||H can be described by {{OID, PF}, H} in
ASN.1 language, where {, ..., } denotes the enumerate type, OID is the hash
object ID and PF is the parameter field. In PKCS#1, PF is defined as NULL.
When PF is replaced by non-null data, though the message format is not accepted
in PKCS#1, it is acceptable by an ASN.1 parser. An idea of a variant attack by
Oiwa et al. [11] is to insert the garbage into the parameter field rather than to
the end of the message format. If message format is checked by generic ASN.1
parser, the forgery will be successful. In fact, they actually forged a signature
and found the vulnerability in GNUTLS ver 1.4.3 and earlier (though they are
resistant to Bleichenbacher’s attack).

By the same analysis, it is easily shown that Oiwa et al.’s variant has the
same ability to Bleichenbacher’s attack. Moreover, the same extension proposed
in the next section can be possible.

3 Extending Bleichenbacher’s Attack

The security of PKCS#1v1.5 relies on the hardness of factoring n and computing
the e-th root mod n. A key idea of Bleichenbacher’s forgery is to set the forged
signature s̄ in the special form so that upper bits of s̄e are in the PKCS#1v1.5
message format by using the garbage g. In this scenario, an adversary computes
the e-th power only, however, because of the speciality of the forged signature,
the public composites should be large as described in the previous section. In
this section, we extend Bleichenbacher’s attack by using computers rather than
pencils and papers. Our strategy is to obtain a forged signature in non-special
forms. To do so, for a given hash value H(m̄), we search s̄e such that the e-th
root over integer exists, by computing the e-th root over real numbers (note that
the e-th root computation over real number is easy with computers).
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Fig. 1. Outline of the proposed forgery attack

3.1 Description of Proposed Forgery Attack

Let m̄ be a message and H(m̄) be its hash value by SHA-1. For given bit-length
of the composite |n| ≥ 369, define f as a function of m̄ by

f = 2|n|−15 + 15 × (2|n|−23 + · · · + 2|n|−79) + T × 2|n|−208 + H(m̄) × 2|n|−368

= (2192 − 2128 + T ) × 2|n|−208 + H(m̄) × 2|n|−368

where T denotes an integer representation of the octet string TSHA1 (Table 1).
Note that the integer 2192 − 2128 + T in the above equation represents an octet
string 00||01||ffffffffffffffff||00||T. Next, compute the e-th root e

√
f as a

real number and its ceiling
⌈

e
√

f
⌉
. If the difference g =

⌈
e
√

f
⌉e −f is smaller than

2|n|−368, the forgery succeeds, since the forged signature s̄ = e
√

f + g =
⌈

e
√

f
⌉

is
valid on the message m̄ with the garbage g. If g is not small, change the message
m̄ until the forgery succeeds.

Let us analyze the proposed forgery attack with general n and e. In the
failure case, some least significant bits of H(m̄) in f , say t bits, differs from
the corresponding part in � e

√
f�e (in other words, these t bits coincide in the

successful case), where t is a parameter determined by n and e (see Figure 1).
In the forgery, f is (|n| − 15)-bit and the integer part of e

√
f is (|n| − 15)/e-bit,

and the uncontrolled part of � e
√

f�e is (e − 1)(|n| − 15)/e-bit. Thus we have a
condition |n| − 208 − (160 − t) > (e − 1)(|n| − 15)/e, namely,

|n| > (353 − t)e + 15. (1)

Here we implicitly used the random oracle assumption. Especially, when |n| =
1024 and e = 3, this condition implies that t > 50/3 ≈ 16.6. That is, in order to
forge a signature with 1024-bit composites, the proposed forgery attack succeeds
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Table 2. A forged signature by the extended forgery attack (1024-bit, e = 3)

m̄ “00002e36”
H(m̄) 701f0dd6 f28a0bab 4b647db8 ddcbde40 1f810d4e

f 0001ffff ffffffff ffff0030 21300906 052b0e03 021a0500 0414701f 0dd6f28a
0bab4b64 7db8ddcb de401f81 0d4e0000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

s̄ 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 0001428a 2f98d728 ae220823
1fc5cff6 ac440735 9b078378 24846240 4cebfc71 5690f34c 7119d1da 99227fd0

s̄e 0001ffff ffffffff ffff0030 21300906 052b0e03 021a0500 0414701f 0dd6f28a

0bab4b64 7db8ddcb de401f81 0d4e 06dd 391b3fd4 ace323ee de903694 dd78887f

5f8a73e0 5ea698ae 72a6bdfa cb7c359e 1f78cbee 96939eea 4d9b8f3e 47aebae3

90f4fe61 73ef7535 80c4cb88 edd95623 84b7e5ed ccc19fa3 ca64c0a2 a37e5000

with probability 2−16.6, namely, 216.6 messages are required to forge a signature,
which is feasible in practice. Note that the proposed attack is a generalization
of the extension by Tews [19] in which 275992 ≈ 218.1 messages are required in
the experiment.

In the above construction, the number of the octet ff in f was fixed to 8 (this
is minimum for the forgery). Similar construction is possible with more octets
than 8, but requires larger composites instead.

Numerical Example. As an example of the proposed forgery attack, a forged
signature on the message m̄ =“00002e36” (as a binary data with big endian) with
|n| = 1024 and e = 3 is shown in Table 2, where underlined octets correspond to
the hashed value H(m̄) and masked octets correspond to the garbage g. Here,
the messages were incrementally generated (as integers) from “00000000”, and
0x00002e36 = 262144 = 213.53 messages were generated until the forgery
succeeds.

3.2 Special Cases

Let us consider two special cases of the proposed forgery attack, namely t = 0
or t = 160 cases.

When we set t = 0, the forgery attack always succeeds. In this case, the
condition (1) implies

|n| > 353e + 15. (2)

Even when e = 3, this condition implies that |n| > 1074 which is beyond 1024.
Also, we have |n| > 6017 for e = 17 and |n| > 23134577 for e = 65537. Since this
case only uses the garbage space, it allows a forgery on arbitrary chosen messages
with smaller composites than the original attack. Especially, this attack does not
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require a condition on the target message m̄ and the attack always succeeds. As
a numerical example, a forged signature on the message m̄ (“pkcs-1v2-1.doc”
[14]) with |n| = 1152 and e = 3 in Table 8 in appendix B, which succeed a
forgery for e = 3. Note that Bleichenbacher’s original attack cannot forge for
1152-bit composites nor the exponent e = 3.

On the other hand, when we set t = 160, the attack becomes most powerful
but the adversary can not control the hash value at all. In this case, the condition
(1) implies

|n| > 193e + 15 (3)

which is obtained by substituting t = 160 into the condition (1). Consequently,
we have |n| > 595 for e = 3, |n| > 3297 for e = 17 and |n| > 12648657 for
e = 65537. However, since the adversary can not control the hash value, the
success probability (in the sense that the adversary obtains the target message
m̄) is 2−160 which is beyond feasible. Another forged signature on the hash value

H = 7fa66ee7 e5cc4a9f bd6e13a8 11d298c2 6b9b3302

with |n| = 4096 and e = 17 in Table 9 in appendix B, which succeed a forgery
for e = 17, however, the success probability is 2−113. Note that Bleichenbacher’s
original attack cannot forge for 1024-bit composites nor the exponent e = 17.

Table 3. A comparison of forgery attacks

Bleichenbacher’s Attack Proposed Attack
t = 0 General t t = 160

M(e) 576e + 15 − e log2

(
2e

e−1

)
353e + 15 (353 − t)e + 15 193e + 15

|n| − 15 is divisible by e

M(3) 1740 1075 1075 − 3t 595

M(17) 9790 6017 6017 − 17t 3297

M(65537) 37683790 23134577 23134577 − 65537t 12648657

Success Probability 1 1 2−t 2−160

3.3 Comparison

A comparison between the original and proposed attacks are shown in Table 3,
where M(e) denotes the minimum bit-length of the composites to which the
attack succeeds with a general exponent e. Since exponents e = 3, 17, 65537 are
widely used, corresponding values M(3), M(17), M(65537) are also included in
the comparison. As in the table, the proposed attack with t = 160 forges with
smallest composites. Especially, it only forges for |n| = 1024 (with e = 3).

4 Time-Stamp Forgery

In the previous section, we proposed a forgery attack against PKCS#1v1.5 based
on Bleichenbacher’s attack. When |n| = 1024 and e = 3, the success probability
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Fig. 2. Outline of the time-stamp protocol

of a forgery on a chosen message is 2−16.6. However, when the message is ‘re-
dundant’, namely, it includes supplementary data besides a body of the message
whose space is larger than 216.6, the adversary can always forge a signature on
the chosen message by the proposed attack. In order to clarify this scenario, we
forge time-stamps by the proposed attack and (extended) Oiwa et al.’s attack,
since a time-stamp contains a 64-bit nonce. We also checked some time-stamp
verification applications whether they accept the forged time-stamp. As a result,
we would like to report that the latest version of Adobe’s Acrobat and Acrobat
Reader improperly accept the forged time-stamp (generated by the proposed
attack).

4.1 Time-Stamp Protocol

The time-stamp is a cryptographic scheme which assures the existence of a doc-
ument at a certain time. We briefly explain the time-stamp protocol defined in
RFC 3161 [4], which is a target of our forgery attack. When a user requires a
time-stamp on his document m, he sends its hash value H(m) with a 64-bit
random value (as a nonce) to a time-stamp server. The server firstly creates
a file TSTInfo which includes the given hash value H(m) (messageImprint), the
given random value (nonce) and the time information (genTime). Then the server
computes signedAttrs which includes a hash value of TSTInfo as messageDigest.
Finally, the time-stamp server generates a signature signature on signedAttrs
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with his secret key and publishes it as a time-stamp on the document m and the
random value. By verifying the time-stamp, a verifier confirms the existence of
the document at the time described in genTime. An outline of the time-stamp
protocol is shown in Figure 2.

In the time-stamp protocol [4], PKCS#1v1.5 with SHA-1 can be used as a sig-
nature scheme. The center column in Table 4 shows an example of a time-stamp
issued by a trial time-stamp server maintained by Seiko Instruments Inc. [17] at
2006-09-21 10:29:27.64 on the document m (“pkcs-1v2-1.pdf” [15]) based on
PKCS#1v1.5 (|n| = 1024 and e = 3) with SHA-1. TSTInfo and signerInfos are
in PKCS#1v1.5 format. A verification result (se mod n) is also included in the
table, where underlined octets correspond to a hash value of signerInfos.

4.2 Applying Proposed Attack to Time-Stamp Protocol

Since the time-stamp is a kind of signature scheme, we can apply the proposed
forgery attack. A difference is that since a message has a 64-bit nonce, an adver-
sary can fix the message in the forgery attack: the adversary only has to change
the nonce until the forgery succeeds. Thus, the adversary can forge a chosen
message if 64-bit space is enough.

In the attack, an adversary firstly fixes the time to be stamped and sets
genTime. Then, on a chosen message, he randomly generates a 64-bit nonce
and computes messageDigest from chosen genTime and nonce. If he can forge a
signature on messageDigest, the time-stamp forgery is finished. When |n| = 1024
and e = 3, it is estimated that about 216.6 messageDigest, namely, 216.6 nonce are
required to forge a time-stamp. Since the nonce space is 64-bit, the adversary
always succeeds a forgery.

An example of a forged time-stamp is shown in the right-most column in
Table 4, where changed data (from a valid time-stamp) are only described. Here
underlined octets correspond to a hash value of signerInfos and masked octets
correspond to the garbage. If a verification implementation is loose, the forged
time-stamp will be accepted, namely, it is confirmed that the document existed
at 0001-01-01 00:00:00.0. Note that in this forgery, only genTime is changed
from a valid time-stamp for simplicity. The adversary can change the message,
if required.

In the above description, we only dealt with the proposed attack which is
based on Bleichenbacher’s attack. By the same approach, Oiwa et al.’s forgery
attack can be extended and applied to the time-stamp protocol with the same
ability (but the different implementation assumptions).

4.3 Checking Verification Implementations

We checked some time-stamp verification client programs whether they accept
two forged time-stamps generated by the proposed attack (denoted by TST-P)
and by Oiwa et al.’s variant (TST-O).
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Table 4. Valid and forged time-stamps (1024-bit, e = 3)

A valid time-stamp A forged time-stamp

TSTInfo 3081f6
version 020101
policy 06090283 388c9b3d 01030230

21300906 052b0e03 021a0500
messageImprint 0414784a 21902486 c00c6dbb

a87ef918 7bdf08fc 3f9f
serialNumber 020357ee 1b
genTime 18123230 30363039 32313130 18123030 30313031 30313030

32393237 2e36345a 30303030 2e30305a
(“2006-09-21 10:29:27.64”) (“0001-01-01 00:00:00.0”)

accuracy 300a0201 00800201 f4810100
nonce 02082dff 78d3789b 9c97 02080000 00000001 bf67
tsa a08193a4 81903081 8d310b30

09060355 04061302 4a50311f
301d0603 55040a13 16536569
6b6f2049 6e737472 756d656e
74732049 6e632e31 14301206
0355040b 130b4368 726f6e6f
74727573 74312d30 2b060355
040b1324 536f7665 72656967
6e205469 6d652054 53205365
72766572 20534e3a 39314430
30363234 31183016 06035504
03130f44 656d6f54 53536f6e
53494931 3031

signerInfos
signedAttrs 3181f3
contentInfo 301a0609 2a864886 f70d0109

03310d06 0b2a8648 86f70d01
09100104 30230609 2a864886
f70d0109 043116

messageDigest 0414feca 1088d59e e69a1553 0414e8e6 4aa7ec9c 2fdb3d22
172fbc92 a8636195 6335 f7b5682a bcf9afd0 f9c7

eSSSigningCertificate 3081af06 0b2a8648 86f70d01
0910020c 31819f30 819c3081
99307f04 140bde7d 9e80ee5b
4d802804 b4c8382b ac8c4d0c
05306730 5aa45830 56310b30
09060355 04061302 4a50311f
301d0603 55040a13 16536569
6b6f2049 6e737472 756d656e
74732049 6e632e31 14301206
0355040b 130b4368 726f6e6f
74727573 74311030 0e060355
04031307 44656d6f 43413102
0900f6e2 0bb648ca fd8e3016
0414342d 517f9a5f 7ebfa4ab
4bcaffdf cf1ae903 30d6
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Table 4. (continued)

signature (s) 3868bb42 9f71a918 e906f2e0 00000000 00000000 00000000
674798fd ffeef81d 5942a300 00000000 00000000 00000000
08c45e1b a8b2a966 3be95650 00000000 00000000 00000000
d6bb8501 06dea5c7 e373f820 00000000 00000000 00000000
f538f860 cf06bd78 313e51dc 00000000 00000000 00000000
070e03b5 f286bace 7dff72af 00000000 00000000 00000000
88e32a5a 6629ae72 65541ea3 00000000 00000000 00000000
28014181 b7a6424c aee030d6 0001428a 2f98d728 ae220823
548636af 20f5d6d4 f43936a2 1fc5cff6 ac440735 9b078378
f732e728 b1fbdfc6 a4cf5b0e 2484756e 10093903 9319a13e
3637bcd9 c8aa8f73 eb2d174d 90fe10aa

A verification result 0001ffff ffffffff ffffffff 0001ffff ffffffff ffff0030
(se mod n) ffffffff ffffffff ffffffff 21300906 052b0e03 021a0500

ffffffff ffffffff ffffffff 0414cb74 56c4991f 270c1044

ffffffff ffffffff ffffffff 5a7c525b 14836ec0 fe33 6a89

ffffffff ffffffff ffffffff ea7f9c08 e357202c 288839f2

ffffffff ffffffff ffffffff 0ce9cbd3 75925ad5 45f6ebf2

ffffffff ffffffff ffffffff 99a247b1 f995ae2e 7365203c

ffffffff ffffffff 00302130 ba83acf1 7ca3964d 1a204b0b

0906052b 0e03021a 05000414 2be547f6 91771716 55f5e7dd

26eee9a4 46e35f03 5c1f6857 51c0a4a3 6b06b235 6eb173da

95fc927d dc158653 482f36d7 5a1db768

Table 5. Verification results of forged time-stamps

Client Version TST-P TST-O

TrustPort Rejected Rejected

Chronotrust client program 1.0 Rejected Rejected

PFU time-stamp client tool V2.0L30 Rejected Rejected

Acrobat (Professional / Standard / Reader) 7.x, 8.x Accepted Rejected

e-timing EVIDENCE Verifier for Acrobat 2.30 (input error) (input error)

Target verification clients are as follows:

– TrustPort by AEC [2]
– Chronotrust client program by Seiko Instruments Inc. [18]
– Time-stamp client tool by PFU [12]
– Acrobat (Professional, Standard, Reader) by Adobe [1]
– e-timing EVIDENCE Verifier for Acrobat by Amano [3]

These clients are categorized by two groups: a time-stamp in the first group
should be held separately from the corresponding message while a time-stamp
in the second group should be embedded in the same file as the message.
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Fig. 3. Verification with the forged time-stamp by Adobe’s Acrobat Reader 8.00 (1)

Verification results of above clients are summarized in Table 5. As in the table,
only Acrobat improperly accepts the forged time-stamp TST-P. More details are
described in the next subsection. Note that the output by e-timing EVIDENCE
Verifier for Acrobat are “input error”, (not “rejected”), since the time-stamp was
not generated by Amano’s time-stamp server. Thus, we couldn’t check whether
Amano’s client has the implementation error or not.

4.4 How to Deceive Adobe’s Acrobat

A Portable Document Format (PDF) is a de facto standard for describing dig-
ital documents developed by Adobe. The format allows a PDF file to embed
signatures and time-stamps in the same file. A verifier confirms the signatures
and time-stamps by specific tools (application softwares). In the current version
of PDF, the time-stamp based on RFC 3161 [4] can be used. Adobe’s Acrobat is
a widely used application for making digital files in PDF, and Adobe’s Acrobat
Reader is used for reading PDF files. In addition, Acrobat and Acrobat Reader
can verify the signatures and time-stamps embedded in the file.

We are motivated by an observation that Adobe has not published any re-
sponse to the vulnerability report VU#845620 [7]. A PDF file of the schedule
of the rump session of CRYPTO 2006 (held on August 2006) was used as a
target message. First, we obtain a time-stamp from a trial-server maintained
by Seiko Instruments Inc. [17] based on PKCS#1v1.5 (|n| = 1024 and e = 3)
with SHA-1. Then, we generate a forged time-stamp which asserts that the doc-
ument existed at 2006-04-01 09:00:00.0. In fact, Adobe’s Acrobat Reader 7.09
accepts the forged time-stamp as in Figure 3 and 4. As far as we examined,
the same vulnerability is found in Acrobat 7.09 and Acrobat Reader 7.09, 8.00.
Note that we have already submitted the vulnerability report to a governmental
organization.
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Fig. 4. Verification with the forged time-stamp by Adobe’s Acrobat Reader 8.00 (2)

5 Concluding Remarks

This paper analyzes Bleichenbacher’s forgery attack against the signature scheme
RSASSA-PKCS1-v1 5 (PKCS#1v1.5) with the implementation error, and pro-
posed an extended attack. As an example, we forged a time-stamp with 1024-bit
composite and the exponent 3, and showed that the latest version of Adobe’s
Acrobat and Acrobat Reader accept the forged time-stamp improperly. Resist-
ing the original and proposed forgery attacks is easy and simple: fixing the loose
implementation is enough. Avoiding small exponents might be another counter-
measure, however, once a certificate with exponent e = 3 is issued by a trusted
party, one cannot refuse it when the verification is accepted.

As described in this paper, the proposed attack succeeds a forgery on an arbi-
trary message with redundancy when |n| = 1024 and e = 3. Though this paper
only dealt with the time-stamp, similar forgery is possible on other messages
with redundancy. One future work is a signature forgery on a message in PDF
or PS files and other is a certificate forgery. Searching loose implementations
which accept these forgeries is also required.
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A Numerical Example of Bleichenbacher’s Forgery

We show a numerical example of Bleichenbacher’s original forgery attack [6].
For obtaining a valid signature, a 3072-bit composite n and a secret key d were
generated by OpenSSL as in Table 6. We used the hash function SHA-1 and a
public key e = 3 and chose a digital file “pkcs-1v2-1.doc” [14] as a message m
(whose corresponding a is divisible by 3, fortunately).

A valid signature s on the message m, and a forged signature s̄ on the same
message m are shown in Table 7, where underlined octets correspond to the
hashed value H(m) and masked octets correspond to the garbage g. Comparing
se and s̄e in Table 7, all octets are same except the number of the octet ff and
the garbage. Thus, if an implementation ignores these differences, the forged
signature s̄ is accepted in the verification. Actually, OpenSSL 0.9.7f accepts the
forged signature s̄ on the message m.

Table 6. RSA parameters (3072-bit)

n d9057e4d 2e231c66 f0a35c2c b7eddb75 04b181d6 535b81b3 83eb4765 1d76950d
76c0c513 9efc0933 16255a5a a958007c 1b698c4c 2641418a dab6419f 8c8cf6a9
ac799a12 7b0ec916 b5837e9c 0ecb3dc3 9629427c 08b9b076 1014d3fb c2d6d26f
aade8a49 7aa8b03a 8e0fa396 6f6b54bd 2735a972 85cbaaed 4760ff5c 7c8b4fe2
3d6c053c 69d0fa64 ef3ec8ad 4fa03c16 9b8e5a68 466f7dbb 1f05f6ec caf9706c
d524b148 c41ccb67 512bcf40 b6456321 1a420f22 fedeaf1a 44ff940d eeec2117
9ce14bec 73b5b294 f0723d03 3a810ac3 a98dc56a a9e94eca 798c2033 3fa79eb8
ea10d25b cca36cc2 b14f4c53 3c42560c aafbb7c6 5d524591 68f8b4e0 99351f23
8f5fbf52 ee002fb8 240f7323 938207e3 59a17330 b7df56ef e8660f9a 5cc319ce
d3d93f25 84f5e42a 80f0acdd dec65d4d 629e2250 cbbb06f5 7ceab655 b22216d7
9120bdc9 216310be 4c3b81ea 92017a0b 8205e92d afb9c402 9b0f4603 2a847f67
ba0c271e a3c8f60d 5c48f4fe 22e0d3e9 3b72e9ce 1e5191bc 6167decd cde29c89

d 90ae5433 74176844 a06ce81d cff3e7a3 5876568e e23d0122 57f22f98 be4f0e08
f9d5d8b7 bf52b0cc b96e3c3c 70e555a8 12465d88 1980d65c 91ced66a 5db34f1b
c8511161 a75f30b9 ce57a9bd 5f32292d 0ec62c52 b07bcaf9 600de2a7 d739e19f
c73f06db a71b2027 095fc264 4a478dd3 6f791ba1 ae87c748 da40aa3d a85cdfec
28f2ae28 468b5198 9f7f3073 8a6ad2b9 bd09919a d99fa927 6a03f9f3 31fba048
8e187630 82bddcef 8b728a2b 242e4216 11815f6c a9e9ca11 83550d5e 9f48160e
83a1eb18 fd99ce23 eb14095c 333f0375 747bec29 cbe110e8 4aee7d3b 98b0e20a
53586ce9 319c9857 50fd3c8f 7cc6613f 773748a6 9aa5550c fb691771 f5921b52
dedacd6c cbcee703 1663f656 2019fcd7 2fcd66f5 2f6b5d86 f148f420 5eed94b1
170937ea 8cd536d2 932435c3 adb9d529 98ab1613 8a24f1e2 c9b1c7ad cd57713c
c08f4ccf d8a2dc47 681ef8c0 3fe709d9 52dd12ca edbba76c 21629613 fe8e0343
193e73a5 26533256 aedda14e 6517c092 52a66013 4a2acb98 2c5e2ec1 9fdd7cab

e 03
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Table 7. Valid and forged signatures (3072-bit, e = 3)

m “pkcs-1v2-1.doc” [14]

H(m) f7497dac 551ec010 2f0da8f1 bc8cad52 f93476c3

s 8e33fd97 65de866e 6af1c2ee 0beea1fc 26f7207c 3c9881ef f37876a0 6332d88c
526f8102 93d21d6e 392c248a 1d2b0d6f 2f8ade54 29420bdb 78bd384c 7ef5a52f
2249759e 1edef3f3 88f5d67f c53e8e68 f3dcb403 59716aca 1c3d911d 73fb031d
8cb7b0d3 c3b4a378 02ad1ad5 595859e9 1bd61f51 95e7c275 cc0bfe93 96aee5d2
69474578 7f8b2488 95fd7676 d1dbd964 50cf6ad6 10869c65 aa1520df 508a4376
354b27b5 49677f28 5bcd54e3 b4c3aaa9 1225a955 7e630201 3343b6f8 56de4cbd
af8e227e 4c755675 71c86627 af4ea910 8ecc1d1f 00331169 597d31b5 2028877c
3904b4c1 03077f11 fe4cf28a 79e41bf3 473083ce af4039ae aa92ac62 2826fc90
aef29c49 66bfc99c 01421130 d2b6313d 07031652 1862e9d5 fb3715e7 00fc168b
abc17ac4 c3b1a83c abe59ab6 34e29539 0c51fafa 685aeeb9 c53aa717 c2cb3960
eae314b8 ba09ef93 bef18bea 59502641 08e31ffc 569ed6aa b3f145f8 d0e82466
8d2ca851 e6a279c7 474387ea 3d300923 dbbaa193 a0baf928 2668fa60 469ecc14

se mod n 0001ffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 00302130
0906052b 0e03021a 05000414 f7497dac 551ec010 2f0da8f1 bc8cad52 f93476c3

s̄ 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
07ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe aaead6ea b6b2b18e
bd595822 b1555ac6 9f0ca790 717e556a e9678bec fb663c6e a19b4904 00000000
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Table 7. (continued)

s̄e 0001ffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ff003021 30090605

2b0e0302 1a050004 14f7497d ac551ec0 102f0da8 f1bc8cad 52f93476 c3 000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 2a9aa11c bb60cb35 cb569ddd 576c2729

34a1298d 905793b0 24ba9a39 7f041398 a7622310 78e8099f 87faed46 0fbb8f46

67ace20c a1940f81 bced58bf 9ac3671c a2551f73 4cb80ec1 7fffffff ffffffff

ffffffff fffffffd a285694c d9347ab7 528d15f9 d0dbf0cc 704f592f da3facc6

210397ee 5d034b6d 269467e8 329d478c 53a8e99d 80f0732a 05d709d4 00e7ada7

7ddc41a8 e640296f b2a8eae6 f4888211 591f0578 a07d6ec4 f147f08e ccb06340

4439cb38 fc8144b0 cb0e382b 65583078 a7e9b040 00000000 00000000 00000000

B Numerical Example of Proposed Forgery with t = 0

As an example of the proposed attack with t = 0, we show a forged signa-
ture on the message m̄ (”pkcs-1v2-1.doc” [14]) with |n| = 1152 and e = 3
in Table 8. Here, underlined octets correspond to the hashed value H(m̄) and
masked octets correspond to the garbage g. Note that this case succeeds a
forgery for 1152-bit composites while the original attack cannot. Also note that
a certificate with |n| = 1152 and e = 3 is used in practice [10].

Table 8. A forged signature by the extended forgery attack (1152-bit, e = 3, t = 0)

m̄ “pkcs-1v2-1.doc” [14]

H(m̄) f7497dac 551ec010 2f0da8f1 bc8cad52 f93476c3

s̄ 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
07ffffff ffffffff feaaead6 eab6b2b1 8e848b2b fc6229a1 298029f9 27529629
bb642126 87226bf8 913ab27d 52295002

s̄e 0001ffff ffffffff ffff0030 21300906 052b0e03 021a0500 0414f749 7dac551e

c0102f0d a8f1bc8c ad52f934 76c3 0000 008e30ab d25ce35d 65cd0c25 1fc29df3

37419efd 4d08694d f3b45d86 42970cbe ef3cb225 c0e88433 552da1d0 dc35aaa1

73f1189f e0b341fc 56d5c5ea 45db5483 15e79d2a 71b6235a 44891287 00bb02f9

ffabe940 83af15c8 eabb0c30 2fefc008



72 T. Izu, T. Shimoyama, and M. Takenaka

C Numerical Example of Proposed Forgery with t = 160

As an example of the proposed attack with t = 160, we show a forged signature
on the hash value H(m̄) with |n| = 4096 and e = 17 in Table 8. Note that this
case succeeds a forgery for e = 17 while the original attack cannot. However, the
adversary cannot obtain the message m̄ in practice.

Table 9. A forged signature by the extended forgery attack (4096-bit, e = 17)

H(m̄) 7fa66ee7 e5cc4a9f bd6e13a8 11d298c2 6b9b3302

s̄ 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00010aa7 58ccbbf7 7d970c35 9e1c3dc0 f20d32ad 2cf9e18a 463ea7c6 346e7f90

s̄e 0001ffff ffffffff ffff0030 21300906 052b0e03 021a0500 04147fa6 6ee7e5cc

4a9fbd6e 13a811d2 98c26b9b 3302 448a 78e5e262 89a4190f 7d18916a 7aaaf897

feeb1e94 5866a030 208c1f48 2c906901 5f70eb66 97253c87 49790ff7 c175fc06

bddf8bb4 d2ba1cdd c626336a dda2165c dc3f425a 12cc59bc be11883e bbccc73a

0d130b94 83ac2a29 19850778 f066ff4f 374e7a96 f4fb3343 fd397d9c f7a1b8ce

16340da6 f9876f1f cca76cb4 7bfb368b a95a5842 e99c0bfb a2de62cf dbf2c635

c2c268f3 2dc228f7 2f0ebfe2 776dae35 3b82b9d9 474777ed c85eed79 e147fa2b

7500f1d4 23189a7b 9b08abb6 0df908f0 7c1c0fbb 528b3e22 df358b24 8bef05b8

f2449d0b f3fb6dc6 31a809ed 31000210 3df7ae2e 80f3f822 ae5a9f69 2948a2b5

a4529bf0 2b30fc99 1874a25f 28b5de4d 4f9c76cc 419a6848 4536e2fe 2771af8b

989e5fef 1a3aaeea f1694ebf 36e8685c 7f65eff8 b99d956b 676b5a5d f68c4519

330b4b7b 82037bd7 502d7823 4e952ba7 b9662cc2 e4389d00 76e16a47 e3dad8af

e7f86e37 f164aa90 b377dfbc 9d5cc1a4 e1a966fe 3902fea5 2526240b 99ecf6b3

ced8e16e 2d085131 e5ca1676 25459ca0 0821ff8e 03cde17d 3509de96 cbe40f6f

97d5dd5b b7c977fa be2be4f5 79abcbf7 7093ad52 c346371b 5b2708fc 8b831412

9a023cfc 6b2ff020 105db3ac ef80a605 e3c1ea94 d0af9790 00000000 00000000
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in this paper. We provide methods for their efficient calculation by means
of best affine approximations of quadratic functions, for which formulas
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are proved. The notion of second-order nonlinearity is introduced as the
minimum distance from all quadratic functions. Cubic functions, in the
above subset, with maximum second-order nonlinearity are determined,
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Reed-Muller code R(2, n). Moreover, a preliminary study of the second-
order nonlinearity of known bent functions constructions is also given.
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1 Introduction

Boolean functions play a prominent role in the security of cryptosystems. Their
most important cryptographic applications are in the analysis and design of s-
boxes for block ciphers, as well as, filter/combining functions for stream ciphers
[23]. In general, resistance of cryptosystems to various cryptanalytic attacks
depends on the properties of the Boolean functions used. The nonlinearity of
Boolean functions is one of the most significant cryptographic properties; it is
defined as the minimum distance from all affine functions, and indicates the
degree to which attacks based on linear cryptanalysis [21], and best affine ap-
proximations [9], are prevented. For an even number of variables the maximum
possible nonlinearity can only be attained by the so-called bent functions [25].
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The appearance of recent attacks, like algebraic [7] and low order approximation
attacks [12,16,18], necessitates the design of Boolean functions that cannot be
approximated efficiently by low degree functions. This problem has also been
studied in [24], where an algorithm to determine good low order approximations
by repetitive Hamming sphere sampling was presented. The computation of the
best rth order approximations and rth order nonlinearity are known to be diffi-
cult tasks, even for the case r = 2 [4]; in particular, the second order nonlinearity
is unknown, with the exception of some special cases, or when the number of
variables is adequately small.

Motivated by the aforementioned need, in this paper we focus on the efficient
computation of best quadratic approximations of a certain class of cubic Boolean
functions. This led to generalizing notions that are familiar from best affine ap-
proximations, e.g. nonlinearity is extended to 2nd order nonlinearity, defined as
the minimum distance from quadratic functions. Explicit formulas are proved
that compute all best affine (resp. quadratic) approximations of the quadratic
(resp. cubic) functions, without use of the Walsh-Hadamard transform, by ap-
plying the Shannon expansion formula. The results obtained are general, and
most importantly, they hold for an arbitrary number of variables; they focus on
the theoretical aspects of the subject rather than the algorithmic ones. Cubic
functions with maximum (within the subset considered in this paper) second or-
der nonlinearity are determined, yielding a lower bound on the covering radius
of R(2, n). It is shown that their structure is similar to that of quadratic bent
functions. Finally, a preliminary analysis of the second-order nonlinearity for
known constructions of bent functions is given, indicating potential weaknesses
when parameters are not properly chosen. Since several constructions of crypto-
graphic primitives, based on quadratic and cubic functions, have been proposed
in the literature (see e.g. [1] and [11] respectively) due to their efficient imple-
mentation, our results are of high cryptographic value when such functions need
to be applied.

The paper is organized as follows: Section 2 provides the background and in-
troduces the notation. The properties of best affine approximations of quadratic
functions are treated in Section 3, whereas Section 4 studies best quadratic ap-
proximations of cubic Boolean functions and determines efficient ways for their
computation. Constructions of bent functions are analyzed in Section 5, and
Section 6 summarizes our conclusions.

2 Preliminaries

Let f : F
n
2 → F2 be a Boolean function, where F2 = {0, 1} is the binary field.

The set of Boolean functions on n variables is denoted by Bn; they are commonly
expressed in their algebraic normal form (ANF) as

f(x1, . . . xn) =
∑

j ∈ F
n
2

aj xj1
1 · · ·xjn

n , aj ∈ F2 (1)

where j = (j1, . . . , jn) and the sum is performed modulo 2. The algebraic degree
of function f is defined as deg(f) = max{wt(j) : aj = 1}, where wt(j) is the
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Hamming weight of vector j. The terms of degree k ≤ deg(f) that appear in
(1) are called the kth degree part of f ∈ Bn; its truth table is the binary vector
f = (f(0, 0, . . . , 0), f(1, 0, . . . , 0), . . . , f(1, 1, . . . , 1)) of length 2n, also denoted by
f for simplicity. If deg(f) ≤ r, it is well-known that f is codeword of the rth
order binary Reed-Muller code R(r, n) [20]. The Boolean function f ∈ Bn is
said to be balanced if wt(f) = 2n−1, and its Hamming distance from g ∈ Bn is
defined as wt(f + g). Any Boolean function admits the following decomposition.

Definition 1. Let j1, . . . , jk be integers such that 1 ≤ j1 < · · · < jk ≤ n and
k < n. Further, let r = r1 + 2r2 + · · · + 2k−1rk be the binary expansion of the
integer 0 ≤ r < 2k. The expression

f(x1, . . . , xn) =
2k−1∑

r=0

(
k∏

i=1

(xji + r̄i)

)

fr (2)

where r̄i = ri + 1 denotes the complement of ri, and each fr ∈ Bn−k does not
depend on xj1 , . . . , xjk

, is called the kth order Shannon’s expansion formula of
f with respect to the variables xj1 , . . . , xjk

[17].

The sub-functions f0, . . . , f2k−1 in (2) are uniquely determined from f by setting
xji = ri, 1 ≤ i ≤ k. Subsequently, we write f = f0 ‖J · · · ‖J f2k−1 instead of (2),
where J = {j1, . . . , jk}, and f = f0 ‖j f1 when J = {j}. If J = {n−k+1, . . . , n},
the truth table of f(x1, . . . , xn) is constructed by concatenating the truth tables
of the sub-functions fr(x1, . . . , xn−k); this case will be denoted by f = f0 ‖ · · · ‖
f2k−1 and simply referred to as the kth order Shannon’s expansion formula of f .

The Walsh-Hadamard transform χ̂f (a) of the Boolean function f ∈ Bn at
a ∈ F

n
2 is the real-valued function given by [20]

χ̂f (a) =
∑

x∈ F
n
2

χf (x)(−1)〈a,x〉 = 2n − 2 wt(f + φa) (3)

where χf (x) = (−1)f(x) and φa(x) = 〈a, x〉 = a1x1 + · · · + anxn. Clearly f is
balanced if and only if χ̂f(0) = 0. The nonlinearity of f is its minimum distance
from all affine functions, and is determined by

NLf = min
v ∈R(1,n)

{
wt(f + v)

}
= 2n−1 − 1

2
max
a∈ F

n
2

|χ̂f (a)| . (4)

Any affine function v such that wt(f + v) = NLf is called a best affine ap-
proximation of f and is denoted by λf , whereas the set comprising of the best
affine approximations of f is denoted by Af ⊆ R(1, n). The definition of the
nonlinearity leads directly to the following well-known result [4].

Lemma 1. Let f ∈ Bn and v ∈ R(1, n). Then, λ ∈ Af if and only if λ + v ∈
Af+v. Further, |Af+v| = |Af |, i.e. both sets have the same cardinality.

An equivalent statement of Lemma 1, which is subsequently used, is that λf+v =
λf + v for any linear function v. Likewise, the minimum distance between f and
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all quadratic functions is called second-order nonlinearity of f and is denoted by
NQf ; it is given by

NQf = min
u∈R(2,n)

{
wt(f + u)

}
. (5)

From (4), (5) we clearly obtain that NQf ≤ NLf . Likewise, any quadratic func-
tion u with the property wt(f + u) = NQf is said to be a best quadratic approx-
imation of f and is denoted by ξf , whereas the set comprising of best quadratic
approximations of f is denoted by Qf ⊆ R(2, n).

3 Best Affine Approximations of Quadratic Functions

Let f ∈ Bn be a quadratic function and x = (x1, . . . , xn); then, f can be written
as f = xQxT + LxT + ε for some upper triangular binary matrix Q, binary
vector L, and a constant ε ∈ F2, where xQxT is the quadratic part of f . It is
well-known that (see e.g. [20, pp. 434–442]) the rank of the symplectic matrix
Q + QT equals 2h, for some 1 ≤ h ≤ 	n/2
. Then, by Dickson’s theorem there
exists a nonsingular matrix R = (ri,j)n

i,j=1 such that under the transformation
of variables g = xR, function f becomes

f = g0 +
h∑

i=1

g2i−1g2i , deg(g0) ≤ 1 and deg(gj) = 1 (6)

where g0 = g̃ + L(R−1)TgT + ε, for some linear function g̃ obtained from the
quadratic part of f , and {g1, . . . , g2h} are linearly independent linear functions
(actually, we have gj =

∑n
i=1 ri,jxi). Since h only depends on the quadratic part

of function f , it is denoted by hf ; by convention hf = 0 if f ∈ R(1, n). As seen
below, the Walsh spectra of f are fully determined by the value of hf , as well
as its nonlinearity.

Theorem 1 ([20]). Let Bf = {f+v : v ∈ R(1, n)} for a fixed quadratic Boolean
function f ∈ R(2, n). Then wt(f + v) is three-valued

wt(f + v) ∈
{
2n−1, 2n−1 ± 2n−hf−1}

where each value 2n−1±2n−hf−1 occurs 22hf times, and 2n−1 occurs the remain-
ing 2n+1 − 22hf+1 times.

According to (4), the nonlinearity of any quadratic function f ∈ Bn equals
2n−1 − 2n−hf−1. The following statement allows the direct computation of all
best affine approximations of a quadratic function.

Theorem 2. Let the Boolean function f ∈ R(2, n) be given by (6). Then, for
b = (b1, . . . , b2h), its best affine approximations are given by

Af =
{
λb

f ∈ R(1, n) : λb
f = g0 +

2h∑

i=1

bigi +
h∑

i=1

b2i−1b2i, b ∈ F
2h
2

}
.
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Proof. First note that the affine Boolean functions λb
f are pairwise distinct since

from hypothesis we have that {g1, . . . , g2h} are linearly independent; thus |Af | =
22h. Furthermore, for all b ∈ F

2h
2 , we have that

f + λb
f =

h∑

i=1

(
g2i−1g2i + b2i−1g2i−1 + b2ig2i + b2i−1b2i

)

=
h∑

i=1

(
g2i−1 + b2i

)(
g2i + b2i−1

)
. (7)

Since {g1+b2, . . . , g2h +b2h−1} are also linearly independent, we get that for any
choice of b ∈ F

2h
2 it holds wt(f + λb

f ) = 2n−1 − 2n−1−h [20], which by Theorem
1 is the minimum distance between f and all affine functions. The fact that the
number of best affine approximations of f is 22h (equal to the number of different
λb

f constructed here) concludes our proof. ��

Example 1. Let f ∈ B5 be the quadratic function given by f(x1, . . . , x5) =
(x1 + x3)(x2 + x5) + x2 + x4. Its best affine approximations are

λ0
f = x2 + x4 λ1

f = x1 + x2 + x3 + x4

λ2
f = x4 + x5 λ3

f = x1 + x3 + x4 + x5 + 1

by Theorem 2. Note that one of the solutions is the linear part of f . ��

The complexity of determining Af by Theorem 2 is O(n3) and rests with finding
(6) [19,20]; thus, the above method is more efficient than the application of the
fast Walsh transform, whose complexity is O(n2n), for computing all the best
affine approximations.

Proposition 1. Let the Boolean functions f1, . . . , fs ∈ R(2, n) be given by (6)
and

⋃s
i=1

{
gi,1, . . . , gi,2hfi

}
be linearly independent, s ≥ 2. Further, let bi =

(bi,1, . . . , bi,2hfi
) be binary vectors of length 2hfi , 1 ≤ i ≤ s. Then

λb
f1+···+fs

= λb1
f1

+ · · · + λbs

fs
, ∀ b = (b1, . . . , bs) ∈ F

2hf1+···+2hfs

2 . (8)

Proof. Clearly, (8) holds for s = 1; we will only prove its validity for s = 2,
since the general case is then established by induction on s. Let us write f =
f1 + f2, and denote hf , hfi as h, hi respectively. By hypothesis we get fi =
gi,0 +

∑hi

j=1 gi,2j−1gi,2j ; since
⋃2

i=1{gi,1, . . . , gi,2hi} are linearly independent we
obtain h = h1 + h2, and from Theorem 2 the best affine approximations of f ,
for all b ∈ F

2h
2 , are given by

λb
f = g1,0 + g2,0 +

2h1∑

j=1

bj g1,j +
2h2∑

j=1

b2h1+j g2,j +
h∑

i=1

b2i−1b2i = λc1
f1

+ λc2
f2

where c1 = (b1, . . . , b2h1) ∈ F
2h1
2 , c2 = (b2h1+1, . . . , b2h1+2h2) ∈ F

2h2
2 . ��
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4 Best Quadratic Approximations of Cubic Functions

In this section we develop a detailed theoretical framework for efficiently com-
puting the best quadratic approximation of cubic Boolean functions. First, we
need to introduce the following classification.

Definition 2. The Boolean function f ∈ R(3, n) is said to be a class-m function
if there exists a set J = {j1, . . . , jm} with 1 ≤ j1 < · · · < jm ≤ n such that each
cubic term of f(Ax + b) involves at least one variable with index in J, and
m > 0 is the smallest integer that is obtained by a suitable invertible affine
transformation of f .

The above definition implies that a cubic function belongs to exactly one class,
due to the minimality of m (however J is not always unique). An important sub-
set of class-m functions are the separable class-m functions whose cubic terms
involve exactly one variable with index in J; all others are referred to as insep-
arable. The equivalence classes for cubic functions of certain weight found in
[13,14] are separable. An important property of class-m cubic Boolean functions
is given below.

Proposition 2. All class-m cubic Boolean functions f ∈ R(3, n), with J =
{j1, . . . , jm}, admit the following properties

1. Let J′ ⊂ J with cardinality k, 1 ≤ k ≤ m − 1. From the decomposition
f = f0 ‖J′ · · · ‖J′ f2k−1 we have that all fi ∈ Bn−k are class-(m − k) cubic
Boolean functions with the same cubic part;

2. Moreover, m is the least integer such that f = f0 ‖J · · · ‖J f2m−1 with
deg(fi) < deg(f) = 3 for all 0 ≤ i < 2m.

Proof. The proof is provided in Appendix A. ��

Proposition 2 leads to an alternative definition of class-m cubic functions; that
is, m > 0 is the least integer such that a proper choice of m variables leads to a
decrease in the degree of sub-functions, if we apply mth order Shannon expansion
with respect to these variables. Next we focus on the separable cubic functions,
and prove a series of results to determine their best quadratic approximations.

Lemma 2. Let f ∈ R(3, n) be a separable class-m function, with cubic part c =∑m
i=1 xjiqi, where qi ∈ Bn−m is quadratic function not depending on variables

with index in J = {j1, . . . , jm}. Then, from the decomposition f = f0 ‖J · · · ‖J

f2m−1 we get that

fr = q + 〈r, p〉 + lr , 0 ≤ r < 2m (9)

for a quadratic q ∈ Bn−m and affine lr ∈ Bn−m Boolean functions, where r =
(r1, . . . , rm) is the binary representation of r, and p = (q1, . . . , qm).
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Proof. The Boolean function is written as f = c + q + l, where c, q, and l is
its cubic, quadratic, and linear part respectively. By hypothesis, f is a class-
m cubic Boolean function, and therefore according to Definition 2 we neces-
sarily have that q1, . . . , qm �= 0 and linearly independent. Indeed, let us as-
sume that there exist a1, . . . , am ∈ F2, not all of them being zero, such that
a1q1 + · · · + amqm = 0; without loss of generality let am = 1. Therefore, we
have c = (xj1 + a1xjm )q1 + · · · + (xjm−1 + am−1xjm)qm−1, and there exists an
invertible linear transformation (mapping xji + aixjm to xji , for 1 ≤ i < m,
and all the remaining variables to themselves) such that f become class-(m − 1)
cubic Boolean function—contradiction. The quadratic and linear parts of f can
be similarly written as

q =
m−1∑

i=1

m∑

k=i+1

xjixjk
εi,k +

m∑

i=1

xji l
′
i + q′ and l =

m∑

i=1

xjiεi + l′ (10)

for some quadratic q′ ∈ Bn−m and linear functions l′, l′i ∈ Bn−m that do not
depend on xj1 , . . . , xjm . Let us next introduce the auxiliary functions

gs =

(
s∑

i=1

xjiqi

)

+

(
s−1∑

i=1

s∑

k=i+1

xjixjk
εi,k +

s∑

i=1

xji l
′
i + q′

)

+

(
s∑

i=1

xjiεi + l′

)

where the parentheses are used to indicate its cubic, quadratic, and linear parts
respectively (note that gm = f whereas g0 = q′ + l′), and

hs
i =

s∑

k=1

xjk
εk,i +

m∑

k=i+1

rkεi,k , 0 ≤ s < i ≤ m

where rk ∈ F2. By applying Shannon’s expansion formula recursively, we obtain
at the first step f = f0 ‖jm f1, where frm = gm−1 +rm(qm + l′m + εm +hm−1

m ) for
rm = 0, 1. Further expansion of these sub-functions gives f = (f0 ‖jm−1 f1) ‖jm

(f2 ‖jm−1 f3), where

fr = gm−2 +
m∑

i=m−1

ri

(
qi + l′i + εi + hm−2

i

)
, 0 ≤ r < 4

and r = rm−1 + 2rm is the binary expansion of r. If we continue this way, we
get the decomposition f = f0 ‖J · · · ‖J f2m−1 after m − 2 steps, which for all
0 ≤ r < 2m leads to

fr = q′ +
m∑

i=1

riqi +

(

l′ +
m∑

i=1

ri

(
l′i + εi +

∑m
k=i+1rkεi,k

)
)

(11)

and r = r1 +2r2+ · · ·+2m−1rm is the binary expansion of r. The claim is proved
by noting that the expression inside the parentheses corresponds to lr in (9), q′

corresponds to q, and 〈r, p〉 =
∑m

i=1 riqi. ��
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We next introduce a commonly used partial ordering of elements of the vector
space F

n
2 . For all a, b ∈ F

n
2 we write a � b if and only if ai ≤ bi for all 1 ≤ i ≤ n.

Lemma 3. Let f = f0 ‖ · · · ‖ f2m−1 be a Boolean function in Bn where m > 0
and all sub-functions fr ∈ R(2, n−m) have the same quadratic part fr = q + lr,
for 0 ≤ r < 2m. Then, deg(f) = 2 if and only if we have

∑
r�c lr = εc for some

εc ∈ F2 if wt(c) = 2 and zero if wt(c) ≥ 3, c ∈ F
m
2 .

Proof. The proof is provided in Appendix B; however, it is seen that it also
holds for the case f = f0 ‖J · · · ‖J f2m−1 with J = {j1, . . . , jm}. It should be
noted that the family of affine functions lr ∈ Bn−m introduced in (11) satisfies
the conditions implied by this Lemma. ��

Lemma 4. For all s ≥ 1 and vectors a = (a1, . . . , as) ∈ Z
s we have that

∑

r ∈ F
s
2

2〈r,a〉 =
s∏

i=1

(
1 + 2ai

)
. (12)

Proof. Note that (12) holds for s = 1; suppose that it holds for s = k ≥ 1 and
all a = (a1, . . . , ak) ∈ Z

k. Then, for s = k + 1 we have from (12) that

∑

(r,t)∈ F
k+1
2

2〈(r,t),(a,b)〉 =
(
1 + 2b

) ∑

r ∈ F
k
2

2〈r,a〉 =
(
1 + 2b

) k∏

i=1

(
1 + 2ai

)

by the induction hypothesis, for all (a, b) = (a1, . . . , ak, b) ∈ Z
k+1. ��

Subsequently, we present the main result of our paper.

Theorem 3. With the notation of Lemma 2, assume f ∈ Bn is a class-m
cubic function, and let qi ∈ Bn−m be given by (6). If all linear functions in⋃m

i=1

{
gi,1, . . . , gi,2hqi

}
are linearly independent, then the best quadratic approx-

imations of f have one of the following forms

ξs
f = ξs

f,0 ‖J · · · ‖J ξs
f,2m−1 , s ∈ F

m
2 (13)

where ξs
f,r = q + 〈s, p〉 + lr + λ〈r+s,p〉 for all r ∈ F

m
2 .

Proof. For fixed s ∈ F
m
2 the sub-functions in (13) have the same quadratic part

q + 〈s, p〉 and yield a quadratic function ξs
f by Lemma 3. Indeed, by Proposition

1 we have λ〈r+s,p〉 =
∑m

i=1(ri + si)λqi , whereas (11) leads to

∑

r�c

ξs
f,r = 2wt(c)(q + 〈s, p〉 + l′

)
+ 2wt(c)−1

m∑

i=1

(
ci

(
l′i + εi

)
+ aiλqi

)

+ 2wt(c)−2
m−1∑

i=1

m∑

j=i+1

cicjεi,j =

{
εu,v , if wt(c) = 2 (cu = cv = 1)
0 , if wt(c) > 2
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since
∑

r�c(ri + si)λqi equals 2wt(c)siλqi if ci = 0 (in which case ai = 2si), and
2wt(c)−1λqi otherwise (where ai = 1). Thus ξs

f are quadratic functions for all
s ∈ F

m
2 ; their distance from f is given by

wt(f + ξs
f ) =

∑

r ∈ F
m
2 \{s}

wt(〈r + s, p〉 + λ〈r+s,p〉) =
∑

r ∈ F
m
2 \{0}

wt(〈r, p〉 + λ〈r,p〉)

which is independent of s, and therefore all ξs
f , s ∈ F

m
2 , are equidistant from f .

By Theorem 1, the definition of nonlinearity, and NL0 = h0 = 0 by convention,
we have 1 ≤ h〈r,p〉 ≤ 	(n − m)/2
 for r �= 0 and

wt(f + ξs
f ) = 2n−1 −

∑

r ∈ F
m
2

2n−m−1−h〈r,p〉 = 2n−1 − 2n−1
m∏

i=1

(
1
2

+
1

2hqi
+1

)

since
⋃m

i=1

{
gi,1, . . . , gi,2hqi

}
are linearly independent by hypothesis, and thus

h〈r,p〉 = hr1q1+···+rmqm = r1hq1 + · · · + rmhqm from Proposition 1 (whereas
the last equality is derived from Lemma 4). Next, we prove that the distance
of any other quadratic function from f is greater than wt(f + ξs

f ). Assume
there exists u ∈ R(2, n), which does not coincide with ξs

f for any s ∈ F
m
2 , and

u = (q′ + l′0) ‖J · · · ‖J (q′ + l′2m−1) where l′r satisfy the condition of Lemma 3.
Consequently q̃ = q′ + q, q1, . . . , qm are linearly independent, otherwise u would
be identical to one of ξs

f ; indeed, if q′ = q+ 〈s, p〉 for some s ∈ F
m
2 then we would

have

wt(f + u) =
∑

r ∈ F
m
2 \{s}

wt(〈r + s, p〉 + l′r + lr)

≥
∑

r ∈ F
m
2 \{s}

wt(〈r + s, p〉 + λ〈r+s,p〉) = wt(f + ξs
f )

where equality holds if and only if we set l′r = lr + λ〈r+s,p〉, for all r ∈ F
m
2 by

Lemma 1. Thus, in order to minimize wt(f + u) we get u = ξs
f . Hence we only

consider q′ �= q + 〈s, p〉 for all s ∈ F
m
2 . Then, we likewise find that

wt(f + u) =
∑

r ∈ F
m
2

wt(q̃ + 〈r, p〉 + l̃r) ≥ 2n−1 −
∑

r ∈ F
m
2

2n−m−1−hq̃+〈r,p〉

where l̃r = l′r + lr and equality holds if and only if l̃r = λq̃+〈r,p〉, for all r ∈ F
m
2 by

Lemma 1. The weight of f+u is minimized if q̃ is chosen such that all hq̃+〈r,p〉 take
their minimum possible value. The fact q̃ + 〈r, p〉 �= 0 implies that hq̃+〈r,p〉 ≥ 1
for all r ∈ F

m
2 ; still, not all hq̃+〈r,p〉 can be made simultaneously equal to 1.

We write q̃ as q̃ = g̃0 +
∑

1≤j≤hq̃
g̃2j−1g̃2j, where the linear part g̃0 is obtained

by applying Dickson’s theorem on q̃. Let us define di as the number of g̃j that
are not linearly independent from gi,j of qi, and ei as the number of products
g̃2j−1g̃2j shared by q̃, qi, 1 ≤ i ≤ m. It is then seen that 0 ≤ di ≤ 2 min{hq̃, hqi}
and 0 ≤ ei ≤ 	di/2
. Further, it can be proved that hq̃+qi ≥ hq̃ + hqi − di and



82 N. Kolokotronis, K. Limniotis, and N. Kalouptsidis

the lower bound is always attained1 if di is even and ei = di/2. Thus wt(f + u)
can be minimized by letting q̃ have common products g̃2j−1g̃2j with q1, . . . , qm.
By hypothesis

⋃m
i=1

{
gi,1, . . . , gi,2hqi

}
are linearly independent, leading to (for

all r ∈ F
m
2 )

hq̃+〈r,p〉 = hq̃ +
m∑

i=1

ri

(
hqi − 2ei

)
and 0 ≤

m∑

i=1

riei ≤ min
{

hq̃,

m∑

i=1

rihqi

}
.

Hence, we see that wt(f + u) ≥ 2n−1 − 2n−1−hq̃
∏m

i=1

(
1/2 + 1/2hqi

−2ei+1
)

and
we need to examine if there exists a particular choice of parameters e1, . . . , em

such that wt(f + u) < wt(f + ξs
f ), which is equivalent to

wt(f + u) < wt(f + ξs
f ) ⇔ 2hq̃−(e1+···+em)

m∏

i=1

1 + 2hqi

2ei + 2hqi
−ei

< 1 . (14)

Since it holds 0 ≤ ei ≤ min{hq̃, hqi}, all terms (2hqi + 1)(2hqi
−ei + 2ei)−1 in

(14) are greater than or equal to 1, where equality is attained if either ei = 0
or ei = hqi = min{hq̃, hqi}; the latter case is valid for all 1 ≤ i ≤ m only if
hq̃ ≥ max{hq1 , . . . , hqm}. Moreover, ei = 0 implies that q̃ does not have common
products with qi, whereas ei = hqi that q̃ is written as the sum of qi and another
quadratic function. Since by hypothesis q̃ �= 〈r, p〉, we either have 0 < ei <
min{hq̃, hqi} for some 1 ≤ i ≤ m, or that q̃ has a product whose functions
do not depend on

⋃m
i=1

{
gi,1, . . . , gi,2hqi

}
, hence 2hq̃−(e1+···+em) > 1, due to

0 < e1 + · · · + em < min{hq̃, hq1 + · · · + hqm}. Therefore, in any case we get
wt(f + u) > wt(f + ξs

f ). ��

By assuming that all
⋃m

i=1

{
gi,1, . . . , gi,2hqi

}
are linearly independent (see Re-

mark 1 below how such a constraint can be relaxed) and hqi ≥ 1, for 1 ≤ i ≤ m,
the fact hq1+· · ·+hqm = hq1+···+qm ≤ 	(n−m)/2
 leads to hqi ≤ 	(n−3m)/2
+1.
Thus, we have the following result.

Corollary 1. With the notation of Theorem 3, for any separable class-m cubic
function f ∈ R(3, n) we have m ≤ 	n/3
 and

NQf = 2n−1 − 2n−1
m∏

i=1

(
1
2

+
1

2hqi
+1

)
(15)

for some 1 ≤ hqi ≤ 	(n − 3m)/2
 + 1.

Remark 1. The applicability of the results in Theorem 3 and Corollary 1 can be
more general than currently stated. In particular, let us consider an m×m non-
singular matrix P = (pi,j)m

i,j=1, Q = (q1, . . . , qm), and vector Q′ = (q′1, . . . , q
′
m)

1 From the above, q̃ + qi has hq̃ + hqi − 2ei products (excluding common ones) of the
form g′

2j−1g
′
2j , where di −2ei of the terms g′

j are not linearly independent (l.i.); they
can be chosen (from the di − 2ei l.i. “parity check” equations) so that they reside in
different products, forming u′. Thus hq̃+qi = hq̃ + hqi − 2ei − (di − 2ei) + hu′ , where
0 ≤ hu′ ≤ �di/2� − ei, leading to hq̃ + hqi − di ≤ hq̃+qi ≤ hq̃ + hqi − ei − �di/2�.
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such that Q′=QP . Then, from the linear independence of
⋃m

i=1

{
gi,1, . . . , gi,2hqi

}

we get hq′
j

=
∑m

i=1 pi,jhqi , and

hr1q′
1+···+rmq′

m
=

m∑

i=1

(
m∑

j=1

rjpi,j

)

hqi =
m∑

i=1

r′ihqi = hr′
1q1+···+r′

mqm

where r′i =
∑m

j=1 rjpi,j mod 2, for 1 ≤ i ≤ m. Hence, the results obtained in
Theorem 3 and Corollary 1 would still hold in this case, if we replace hq′

i
with

the ith element of vector Q′P−1.

In the simple case of the class-1 Boolean functions, Corollary 1 gives that NQf =
2n−2 − 2n−2−hq1 with 1 ≤ hq1 ≤ 	(n − 1)/2
. Next, we prove that the maximum
second-order nonlinearity attained by a separable class-m cubic function grows
with m ≤ 	n/3
 (see also Table 1 in Appendix C). Hence, class-1 functions
constitute the most cryptographically weak class with respect to second-order
nonlinearity. The security offered by class-m cubic functions, for large values of
m, is also attributed to the difficulty of finding a set J such that all the 2m

sub-functions in f = f0 ‖J · · · ‖J f2m−1 are quadratic (in order to find the best
quadratic approximations via the Theorem 3); the complexity of this step grows
exponentially with m, for fixed number of variables n.

Theorem 4. With the notation of Theorem 3, the maximum 2nd-order nonlin-
earity of a separable class-m cubic function f ∈ R(3, n) grows with m. Further,
the maximum 2nd-order nonlinearity of separable class-	n/3
 cubic functions is
given by 2n−1 − 1

26n/3.

Proof. In order to establish the first part we need to determine the class of sepa-
rable cubic functions with the highest second-order nonlinearity. From Corollary
1 we see that this is maximized if and only if the product

∏m
i=1

(
1/2+1/2hqi

+1
)

depending on m, hq1 , . . . , hqm is minimized. Since each product term is an inte-
ger less than 1, the number m of terms must be sufficiently large. However, the
constraints on the values taken by each hqi need also be considered. Let H be
the set of distinct integers from hq1 +1, . . . , hqm +1, and suppose a−r, a+r ∈ H
for some a > r + 1 > 1. Then, we have the property

(
1
2

+
1

2a−r

)(
1
2

+
1

2a+r

)
> · · · >

(
1
2

+
1

2a−1

)(
1
2

+
1

2a+1

)
>

(
1
2

+
1
2a

)2

from which we derive that maxa∈H{a} − mina∈H{a}, and the cardinality of
H , should be relatively small. Moreover, by noting that the sequence {(1/2 +
1/2a)i}i≥0 is purely decreasing for any a ∈ H (since then a ≥ 2), we conclude
that the highest possible second-order nonlinearity achieved by separable class-m
cubic Boolean functions, by Corollary 1, is given by

maxclass-m
{
NQ

}
= 2n−1 − 2n−1

(
1
2

+
1

2am+2

)bm
(

1
2

+
1

2am+1

)m−bm



84 N. Kolokotronis, K. Limniotis, and N. Kalouptsidis

= 2n−1 − 2n−1
(

2am+1 + 1
2am+1 + 2

)bm
(

1
2

+
1

2am+1

)m

(16)

where am = 	(n − m)/2m
 and bm = 	(n − m)/2
 mod m, as a result of letting
bm functions qi have hqi = am + 1, and the remaining m − bm have hqi = am.
It is clear from (16) that for small values of m, the integer am is large and
therefore the contribution of (2am+1 + 1)(2am+1 + 2)−1 ≈ 1 is negligible (bm is
also small). So, the maximum second-order nonlinearity attained by separable
class-m cubic functions grows with m ≤ 	n/3
. If m = 	n/3
, then we have
am = 1, bm = 	(n mod 3)/2
, and (16) becomes

NQf = 2n−1 − 2
(n mod 3)/2�−1( 5
3

)�(n mod 3)/2
6�n/3
 = 2n−1 − bn
1
26n/3

where the term bn equals 1 if n ≡ 0 (mod 3), (4/3)1/3 if n ≡ 1 (mod 3), and
(250/243)1/3 if n ≡ 2 (mod 3). Thus, bn ≈ 1 in all cases. ��

The above result also leads to a lower bound on the covering radius of the 2nd
order binary Reed-Muller code R(2, n), that is ρ(2, n) ≥ ρ3(2, n) ≥ 2n−1 − 1

26n/3

(since we only considered cubic Boolean functions satisfying the conditions of The-
orem 3). The lower bound given behaves well with respect to the upper bound
2n−1 −

√
15 2n/2−1 that has been proved in [5] (see Fig. 1 in Appendix C, and the

analysis therein). The cubic part of any separable class-	n/3
 Boolean function is
equivalent (under some transformation of variables y = xR) to the following

�n
3 
−1∑

i=1

y3i−2 y3i−1 y3i + y3�n
3 
−2

(
y3�n

3 
−1 y3�n
3 
 + a y3�n

3 
+1 y3�n
3 
+2

)

where a = 1 if n ≡ 2 (mod 3) and zero otherwise; they can be considered as
a natural extension of bent functions (they have similar representation and the
maximum possible distance from all functions of degree one less). Next we prove
a formula for directly computing ξs

f from f ; comparison of (7), (17) illustrates
similarities on the way that best affine and quadratic approximations are ob-
tained in terms of the Boolean function f .

Proposition 3. With the notation of Theorem 3, the best quadratic approxima-
tions ξs

f of the separable class-m cubic function f are given by

ξs
f = f +

m∑

i=1

(xji + si)(qi + λqi ) , s ∈ F
m
2 . (17)

Proof. From the proof of Theorem 3 and Definition 1, we have that for all s ∈ F
m
2

the best quadratic approximation ξs
f of the class-m cubic function f , with cubic

part c =
∑m

i=1 xjiqi, is such that

ξs
f + f =

(
ξs
f,0 + f0

)
‖J · · · ‖J

(
ξs
f,2m−1 + f2m−1

)

=
∑

r ∈ F
m
2

(xj1 + r̄1) · · · (xjm + r̄m)
m∑

i=1

(ri + si)(qi + λqi)
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due to the linear independence of the functions in
⋃m

i=1

{
gi,1, . . . , gi,2hqi

}
and

the fact that we may write λr1q1+···+rmqm = r1λq1 + · · ·+ rmλqm , for all r ∈ F
m
2 .

By writing the above expression as the sum of those terms for which rm = 0 and
those for rm = 1, then simple calculations give

ξs
f + f =

∑

r ∈ F
m−1
2

(xj1 + r̄1) · · · (xjm−1 + r̄m−1)
m−1∑

i=1

(ri + si)(qi + λqi)

+ (xjm + sm)(qm + λqm)
∑

r ∈ F
m−1
2

(xj1 + r̄1) · · · (xjm−1 + r̄m−1)

=
∑

r ∈ F
m−1
2

(xj1 + r̄1) · · · (xjm−1 + r̄m−1)
m−1∑

i=1

(ri + si)(qi + λqi)

+ (xjm + sm)(qm + λqm)

since
∑

r(xj1 + r̄1) · · · (xjm−1 + r̄m−1) = 1 corresponds to the constant all-one
Boolean function. Repeated application of the above steps will lead to (17). ��

Remark 2. Given class-m cubic Boolean function f =
∑m

i=1 xjiqi + q + l, where
q, l are its quadratic and linear parts respectively, and q1, . . . , qm satisfying con-
ditions of Theorem 3, its best quadratic approximations are directly computed
by means of Proposition 3 as follows

ξs
f =

(

q +
m∑

i=1

(
siqi + xjiλqi

)
)

+

(

l +
m∑

i=1

siλqi

)

, s ∈ F
m
2

where the parentheses indicate its quadratic and linear part respectively.

Example 2. Let f ∈ B8 be the class-2 Boolean function f(x1, . . . , x8) = (x1 +
x3)(x2+x7)(x3+x5)+(x4+x7)

(
x5(x6+x8)+(x7+x8)x8

)
. It is seen that it satisfies

the conditions of Theorem 3, and therefore its best quadratic approximations
(from Proposition 3) are given by

ξf = s1q1 + s2q2 + (x1 + x3 + s1)λq1 + (x4 + x7 + s2)λq2 , si ∈ F2

where q1 = (x2 + x7)(x3 + x5) and q2 = x5(x6 + x8)+ (x7 + x8)x8. From Section
3 we know that the best affine approximations of q1, q2 are

λq1 = a1(x2 + x7) + a2(x3 + x5) + a1a2 , ai ∈ F2 ,

λq2 = b1x5 + b2(x6 + x8) + b3(x7 + x8) + b4x8 + b1b2 + b3b4 , bi ∈ F2 .

Then, its second-order nonlinearity is equal to NQf = 27 − 22 · 3 · 5 = 68. Note
that NQf depends only on the choice of the cubic terms, which is a well-known
result [4]. ��
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5 Implications on Bent Functions Constructions

Many constructions of bent functions [25], having maximum nonlinearity 2n−1 −
2n/2−1 for even n, are based on the concatenation of sub-functions with low de-
gree. Next, we analyze the second-order nonlinearity of known bent constructions
and demonstrate the applicability of our results.

5.1 Maiorana-McFarland Construction

Let n be a positive integer, φ : F
n
2 → F

n
2 be a permutation of the elements of

the vector space F
n
2 , and g : F

n
2 → F2 be an arbitrary Boolean function. Then

f : F
n
2 × F

n
2 � F

2n
2 → F2, which is given by

f(x, y) =
〈
x, φ(y)

〉
+ g(y) , x, y ∈ F

n
2 (18)

is a Maiorana-McFarland function [8,22]; it is known that all functions of this
form are bent (of highest possible degree n if g is properly chosen). Furthermore,
f can be considered as the concatenation of 2n affine sub-functions of Bn [3]. As
shown next, the second-order nonlinearity of cubic Boolean functions obtained
by (18) is very low in certain cases.

Proposition 4. Let f ∈ B2n be a cubic function given by (18) and let φ be a
linear invertible mapping. If g is separable satisfying the condition of Theorem
3, then NQf ≤ maxclass-�n/3
{NQ}.

Proof. Since φ is linear, the expression
〈
x, φ(y)

〉
contains only quadratic terms,

leading to deg(g) = 3. By the fact g ∈ Bn we get that the maximum second-order
nonlinearity that f ∈ B2n can attain is maxclass-�n/3
{NQ}, which is far below
maxclass-�2n/3
{NQ}. ��

The trade-off between nonlinearity and second-order nonlinearity is easily seen
even for small values of n; e.g. if n = 3 then g becomes a class-1 cubic Boolean
function, while the nonlinearity and second-order nonlinearity of f equals 28 and
8 respectively, according to Corollary 1.

5.2 Charpin-Pasalic-Tavernier Construction

The construction of cubic bent functions proposed in [6] is based on the con-
catenation of two quadratic semi-bent functions fb, fc ∈ Bn for odd n, vectors
b, c satisfying wt(b) �≡ wt(c) (mod 2), and each function given by

fa(x) =
(n−1)/2∑

i=1

ai tr
(
x2i+1) , x ∈ F2n and a ∈ F

(n−1)/2
2 (19)

where a = (a1, . . . , a(n−1)/2) and tr(x) = x + x2 + · · · + x2n−1
is the trace

function mapping elements of finite field F2n onto F2 [19]. It is seen that the
Boolean function f = fb ‖ fc ∈ Bn+1 is a class-1 cubic function.
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Proposition 5. With the above notation, let fb, fc be such that fb + fc is a
quadratic semi-bent function. Then, the second-order nonlinearity of f = fb ‖ fc

is NQf = 2n−1 − 2(n−1)/2 = maxclass-1{NQ}.

Proof. From Theorem 3, the Boolean function ξ0
f = fb ‖ (fb + λfb+fc) is a best

quadratic approximation of f . From Corollary 1, its second-order nonlinearity
is NQf = NLfb+fc = 2n−1 − 2(n−1)/2, since n is odd, fb + fc is a semi-bent
quadratic function and hfb+fc = (n − 1)/2 [15]. ��

A generalization of the above concatenation was presented in [6]; for odd n, if
f, f ′ ∈ Bn+1 are bent such that f = fb ‖ fc, and f ′ = fd ‖ fe, where wt(b), wt(d)
are odd and wt(c), wt(e) are even, then

g = f ‖ f ′ ∈ Bn+2 and g′ = f ‖ f ′ ‖ (1 + f) ‖ f ′ ∈ Bn+3 (20)

are semi-bent and bent respectively. If we assume that fe = fb + fc + fd, then
both g, g′ are cubic with g = fb + xn+1(fb + fc) + xn+2(fb + fd) and g′ =
g + xn+3(1 + xn+2). As a result, class-2 cubic functions can also be obtained by
this construction, having higher second-order nonlinearity.

Proposition 6. The second-order nonlinearity of any function g, g′ given by
(20) satisfies NQg ≥ NQf + NQf ′ and NQg′ ≥ 2

(
NQf + NQf ′

)
.

Proof. The claim follows by noting that, if there exist ξf ∈ Qf , ξf ′ ∈ Qf ′ with
the same quadratic part, then ξg = ξf ‖ ξf ′ ∈ Qg. Similar arguments hold for
the function g′, since NQ1+f = NQf [4]. ��

6 Conclusions

The common characteristic of cubic functions studied in this paper, called separa-
ble, is that the structure of their highest degree part is undesirable in most cryp-
tographic applications; it allows the efficient computation of their best quadratic
approximations, by Theorem 3, but can be the source of other cryptanalytic at-
tacks as well. Among these functions, class-	n/3
 are the most cryptographically
strong, as they attain higher second-order nonlinearity and their best quadratic
approximations are more difficult to find. The analysis of bent constructions
raises the need to find Boolean functions of nearly maximum nonlinearity and
second-order nonlinearity. Research in progress focuses on extending the above
results to functions of higher degree, and identify any trade-offs of second-order
nonlinearity with other cryptographic criteria.
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A Proof of Proposition 2

Without loss of generality let us assume that J′ is comprised of the last k elements
of the set J, with 1 ≤ k ≤ m − 1. We proceed by induction on the cardinality k
of J′. It is easily seen that Property 1 holds for k = 1, since by f = f0 ‖jm f1
and the hypothesis, we conclude that deg(f0) = 3 and its cubic part includes
the cubic terms involving at least one variable with index in J \ J′; hence, f0 is
a class-(m − 1) cubic Boolean function. Then, we have that f1 = f0 + f ′

1 where
deg(f ′

1) < 3, and thus f1 has the same cubic part with f0. Next, assume that
Property 1 holds for some k and J′ = {jm−k+1, . . . , jm}, 1 ≤ k < m − 1. The
fact that it also holds for k + 1 is established by the identity

f = f0 ‖J′ · · · ‖J′ f2k−1 = (f ′
0 ‖jm−k

f ′
1) ‖J′ · · · ‖J′ (f ′

2k+1−2 ‖jm−k
f ′
2k+1−1)

= f ′
0 ‖{jm−k} ∪ J′ · · · ‖{jm−k} ∪ J′ f ′

2k+1−1 (21)

due to Definitions 1, 2, and the fact that jm−k < min J′ (note that (21) would
still hold, up to a re-ordering of the resulting sub-functions, if this was not true).
The sub-functions fi (resp. f ′

i) have cubic terms involving at least one variable
with index in J \ J′ (resp. J \ {jm−k} ∪ J′).

In order to prove Property 2 we need only consider (21) for k = m − 1. From
Property 1 we get that f = f0 ‖J \{j1} · · · ‖J \{j1} f2m−1−1, where all fi are
class-1 cubic Boolean functions with the same cubic part (that of f0). From (21)
we have that fi = f ′

2i ‖j1 f ′
2i+1, where both functions f ′

2i, f
′
2i+1 are quadratic.

B Proof of Lemma 3

By hypothesis and Definition 1, we have J = {n − m + 1, . . . , n}. First we prove
by induction on the cardinality m of J that f can be written as

f =
∑

c∈ F
m
2

(
∑

r�c

fr

)

xc1
n−m+1 · · · xcm

n . (22)
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Indeed, it is seen that (22) holds for m = 1 and m = 2 since then we find
f = f0 + xn−1(f0 + f1) + xn(f0 + f2) + xn−1xn(f0 + f1 + f2 + f3). Let us
assume that (22) holds for m = s and let f ∈ Bn be the concatenation of
2s+1 sub-functions. From the identity f = f0 ‖ f1 ‖ · · · ‖ f2s+1−2 ‖ f2s+1−1
= (f0 + xn−s(f0 + f1)) ‖ · · · ‖ (f2s+1−2 + xn−s(f2s+1−2 + f2s+1−1)) we see that
f is written as the concatenation of 2s sub-functions. Hence, by the induction
hypothesis we obtain

f =
∑

c∈ F
s
2

(
∑

r�c

f2r + xn−s

∑

r�c

(
f2r + f1+2r

)
)

xc1
n−s+1 · · · xcs

n

=
∑

b∈ F2

∑

c∈ F
s
2

(
∑

t≤b

∑

r�c

ft+2r

)

xb
n−s xc1

n−s+1 · · · xcs
n

which leads to (22) if we define c̃ = (b, c) ∈ F
s+1
2 , and r̃ = (t, r) ∈ F

s+1
2 . Hence, if

fr = q + lr then we have
∑

r�c fr = 2wt(c)q +
∑

r�c lr =
∑

r�c lr for all nonzero
c, and the claim is a direct consequence of (22).

C Bounds on the Second-Order Nonlinearity of Separable
Functions

Let us denote by �(n) = 2n−1 − 1
2 6n/3 the lower bound which was proved in

Theorem 4, and by u(n) = 2n−1 −
√

15 2n/2−1 the upper bound derived in [5].
Moreover, let Θ(u) = {v : v ∼ u} be the set of functions that are asymptotically
equivalent to u(n). Then, it can be verified that

1
2 u(n) < �(n) < u(n), for all n ≥ 6

which in turn implies that � = Θ(u); this is a standard notation in the literature,
although it would be more natural to write � ∈ Θ(u). In fact, we can prove the
much stronger relation

Table 1. The maximum second-order nonlinearity attained by class-1 and class-�n/3�
separable cubic Boolean functions in Bn, for 3 ≤ n ≤ 32, as computed by Corollary 1

n class-1 class-�n/3� n class-1 class-�n/3� n class-1 class-�n/3�
3 1 1 4 2 2 5 6 6

6 12 14 7 28 31 8 56 68

9 120 148 10 240 315 11 496 667

12 992 1400 13 2016 2918 14 4032 6052

15 8128 12496 16 16256 25703 17 32640 52698

18 65280 107744 19 130816 219754 20 261632 447260

21 523776 908608 22 1047552 1842813 23 2096128 3732139

24 4192256 7548800 25 8386560 15251183 26 16773120 30781447

27 33550336 62070016 28 67100672 125061533 29 134209536 251797546

30 268419072 506637824 31 536854528 1018804657 32 1073709056 2047656190
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—— class−⎣n/3⎦: 2nd order nonlinearity (lower bound)upper bound in [5] ——

—− class−1: 2nd order nonlinearity

Fig. 1. The lower and upper bounds on the covering radius of R(2, n), as determined
by Theorem 4 and [5], for 10 ≤ n ≤ 30. The second-order nonlinearity of class-1 cubic
functions is also depicted.

lim
n→+∞

�(n)
u(n)

= 1

which again states that �(n) and u(n) have the same rate of growth, as also
depicted in Fig. 1.
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Abstract. We compute the Walsh spectrum of a new quadratic APN
function, x3 + Tr(x9), showing that its Walsh transform is 3-valued for
odd n, and is 5-valued for even n. Therefore, the distribution of the values
of the Walsh transform of x3 + Tr(x9) is the same as that of the APN
Gold functions. Moreover, for odd n the function is AB, which gives an
alternative proof of the APN property of the function.

1 Introduction

Let L = GF (2n) for some positive integer n and let Tr(x) denote the absolute
trace map on L.

A function f : L −→ L is said to be almost perfect nonlinear (APN) on L if
the number of solutions in L of the equation

f(x + q) + f(x) = p

is at most 2, for all p, q ∈ L, q �= 0. Equivalently, f is APN if the set {f(x+ q)+
f(x) : x ∈ L} has size 2n−1 for each q ∈ L∗.

Given a function F : GF (2)n −→ GF (2)n, the Walsh transform of F at
(a,b) ∈ GF (2)n × GF (2)n (cf. [5]) is given by

FW (a,b) :=
∑

x∈GF (2)n

(−1)〈a,x〉+〈b,F (x)〉, (1)

where 〈·, ·〉 denotes the usual inner product on GF (2)n. For a function f : L −→
L, we may equivalently define the Walsh transform of f at (a, b) by

fW (a, b) :=
∑

x∈L

(−1)Tr(ax+bf(x)), (2)
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for each a, b ∈ L. Then fW (a, b) is the discrete binary Fourier transform of
g(x) = (−1)Tr(bf(x)). We define the Walsh spectrum of f as the set

Λf = {fW (a, b) : a, b ∈ L, b �= 0}.

Functions with small Walsh spectra (up to 5 values) have arisen in various con-
texts and given a map f : L −→ L, it is often of interest to know its Walsh
spectrum. For example, it is well known that if n is odd and (n, d) = 1 then the
functions x2d+1 and x22d−2d+1 have 3-valued Walsh spectra given by {0, ±2

n+1
2 }

(see [9,11]). These correspond to the APN Gold functions x2d+1 and the Welch-
Kasami functions x22d−2d+1. Niho has made several conjectures in [12] on the
Walsh spectra of many functions. If f(x) has a 3-valued Walsh spectrum (in
which case n must be odd and Λf = {0, ±2

n+1
2 }) we say that f is almost bent

(AB) or maximally nonlinear.
Both APN and AB functions are used in block ciphers. APN functions were

characterized in [13] as the mappings with highest resistance to differential crypt-
analysis and are precisely the functions for which the plaintext difference x + y
yields the ciphertext difference f(x) + f(y) with probability 1/2n−1. AB func-
tions offer the best resistance to linear cryptanalysis, having maximal Hamming
distance to the space of all affine maps. For a comprehensive survey of APN,
AB, and related functions that arise in cryptography and coding theory, see [5].

When n is odd, every AB function on L is also APN [8]. If f is quadratic (so
that each of its exponents is of the form 2i + 2j for some integers i, j) and f is
also APN then it is necessarily an AB function [7]. Thus computing the Walsh
spectrum of a quadratic function on L for odd n can be used to establish the APN
property of a function. On the other hand, for n even, an APN function may
have a large Walsh spectrum (more than 5 values), in which case the function
could be less resistant to a linear attack.

Carlet-Charpin-Zinoviev (CCZ) equivalence, introduced in [7], is a standard
measure to determine whether or not a pair of APN functions are essentially the
same. This relation generalizes extended affine (EA) equivalence. A pair of CCZ
equivalent functions have the same resistance to linear and differential attacks. A
family of APN functions is determined to be “new” if they are CCZ inequivalent
to any previously known family.

Until recently, all known APN functions had been found to be EA equivalent
to one of a short list of monomial functions, namely the Gold, Kasami-Welch,
inverse, Welch, Niho and Dobbertin functions. For some time it was conjectured
that this list was the complete list of APN functions up to EA equivalence.

In 2006, new examples began to appear in the literature. A sporadic example
of a binomial APN function that is not CCZ equivalent to any power mapping
was given in [10]. A family of APN binomials on L, where n is divisible by 3 but
not 9, was presented in [1] and shown to be EA inequivalent to any monomial
function, and CCZ inequivalent to the Gold or Kasami-Welch functions in [2].
A method for constructing new quadratic APN functions from known ones has
been outlined in the preprint [3], and has resulted in the discovery of the function

f(x) = x3 + Tr(x9),
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which is APN on L for any n. In the next section, we will compute the Walsh
spectrum of this function, showing that it is 3-valued (as expected) for odd n,
and 5-valued for even n. This provides another proof of the APN property of
this function for odd n, and is a new result for even n.

For the case n even, if f(x) is an APN function and its Walsh transform has
values in {0, ±2

n
2 , ±2

n+2
2 }, then the distribution of values in the Walsh spectrum

is uniquely determined and must therefore be the same as that of the Gold
functions x2d+1, where (d, n) = 1. The proof that the distribution is uniquely
determined is well known, but we include the argument as Corollary 1.

Finally, we remark that not all quadratic APN functions have the same values
as the Gold functions. For odd n, a quadratic APN function has a 3-valued Walsh
spectrum, and so the distribution of its values is determined (and is the same as
Gold functions). However, for even n, the Walsh spectrum of a quadratic APN
function may have more than five values. The following example is due to Dillon.
Let u be primitive in GF (26). Then

g(x) = x3 + u11x5 + u13x9 + x17 + u11x33 + x48

is a quadratic APN function on GF (26) whose Walsh transform takes 7 distinct
values.

2 New APN Functions

The main result is given by Theorem 1, in which we compute the Walsh spectrum
of x3 + Tr(x9). We will do this by obtaining an upper bound on |fW (a, b)| for
a, b ∈ L, b �= 0. This turns out to reduce to the problem of obtaining an upper
bound on the size of the kernel of an F2-linear map Lb on L.

Theorem 1. The Walsh spectrum of the function

f(x) = x3 + Tr(x9)

is contained in {0, ±2
n+1
2 } when n is odd, and is contained in {0, ±2

n
2 , ±2

n+2
2 }

when n is even.

Proof: Throughout the proof, the notation x1/2 and x2−1
means x2n−1

.
By definition, we have

fW (a, b) =
∑

x∈L

(−1)Tr(ax+b(x3+Tr(x9)) (3)

=
∑

x∈L

(−1)Tr(ax+bx3+Tr(b)x9), (4)

since
Tr(bTr(x9)) = Tr(x9)Tr(b) = Tr(x9Tr(b)).
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Computing the square of fW (a, b) gives

|fW (a, b)|2 =
∑

u∈L

∑

x∈L

(−1)Tr(ax+bx3+Tr(b)x9+a(x+u)+b(x+u)3+Tr(b)(x+u)9)

=
∑

u∈L

(−1)Tr(au+bu3+Tr(b)u9)
∑

x∈L

(−1)Tr(b(x2u+xu2)+Tr(b)(x8u+xu8)).

Using the fact that Tr(θ) = Tr(θ2) for any θ ∈ L, we write

|fW (a, b)|2 =
∑

u∈L

(−1)Tr(au+bu3+Tr(b)u9)
∑

x∈L

(−1)(xLb(u)),

where Lb(u) := bu2 + b2−1
u2−1

+ Tr(b)(u23
+ u2−3

). Since Lb is linearized in u,
it follows that

|fW (a, b)|2 = 2n
∑

u∈kerLb

(−1)Tr(au+bu3+Tr(b)u9). (5)

Moreover, writing gb(u) := Tr(au + bu3 + Tr(b)u9), we obtain

gb(u + v) = gb(u) + gb(v) + Tr(vLb(u)) = gb(u) + gb(v),

for all u ∈ kerLb. Then gb is linear on kerLb and (5) is a character sum over a
linear space, so we get

|fW (a, b)|2 =
{

2n| kerLb| if gb(u) = 0 for all u ∈ kerLb

0 otherwise. (6)

We will show that | kerLb| ≤ 4, and then it will follow from (6) that

|fW (a, b)| ≤ (2n.4)1/2 = 2
n+2
2 . (7)

For the moment assume that fW (a, b) is an integer restricted by (6) and (7). If
the inequality (7) holds and n is odd we have |fW (a, b)| ≤ 2

n+1
2 , and the Walsh

spectrum of f must be {0, ±2
n+1
2 }. If the same inequality holds and n is even,

we deduce that f has Walsh spectrum contained in {0, ±2
n
2 , ±2

n+2
2 }.

We pause to remark that the techniques used up to now are standard in
computing an upper bound on the absolute value of the Walsh transform of an
arbitrary quadratic function.

Now we begin the proof that | kerLb| ≤ 4. Once we show this, the proof is
complete.

If Tr(b) = 0 then fW (a, b) =
∑

x∈L(−1)Tr(ax+bx3), by (4). It is well-known
that x3 has Walsh spectrum {0, ±2

n+1
2 } for odd n, and {0, ±2

n
2 , ±2

n+2
2 } for even

n. In fact this is easy to see, since then (5) becomes

|fW (a, b)|2 = 2n
∑

u∈kerLb

(−1)Tr(au+bu3),

with Lb(u) := bu2 + b2−1
u2−1

, which has at most 4 roots in L, so that (7) holds.



96 C. Bracken et al.

We therefore assume that Tr(b) = 1. Applying this hypothesis, (5) becomes

|fW (a, b)|2 = 2n
∑

u∈kerLb

(−1)Tr(au+bu3+u9),

with Lb(u) = bu2 + b2−1
u2−1

+ u23
+ u2−3

. Our goal now is to show that Lb(u)
has at most 4 zeroes in L.

We now adopt a trick similar to that used in [9]. Consider the polynomial

Γb(u) := bu3 + u9 + u9/2 + u9/4.

It is straightforward to check that Γb(u) + Γb(u)2
−1

= uLb(u). If Lb(u) = 0
then Γb(u) ∈ GF (2). We claim that Γb(u) = 0. Suppose, to the contrary that
Γb(u) = 1. Then b = u6 + u3/2 + u−3/4 + u−3 and hence Tr(b) = 0, which
contradicts our assumption that Tr(b) = 1.

It follows that, for u ∈ L, Lb(u) = 0 if and only if Γb(u) = 0. Now Γb(u) = 0
if and only if

0 = b4u12 + u9 + u18 + u36 = u9(b4u3 + 1 + u9 + u27)

Observe that the set of zeroes in L of Γb is a linear space. Fix an arbitrary
nonzero v ∈ kerLb. For u ∈ kerLb

u(u + v)Γb(v) + v(u + v)Γb(u) + uvΓb(u + v) = 0. (8)

This yields

0 = u(u + v)(bv3 + v9 + v9/2 + v9/4) + v(u + v)(bu3 + u9 + u9/2 + u9/4)
+ uv(b(u + v)3 + (u + v)9 + (u + v)9/2 + (u + v)9/4),

= u2(v22+2−1
+ v2−2+2) + v2(u22+2−1

+ u2−2+2)

+ uv(u22
v2−1

+ u2−1
v22

) + uv(u2v2−2
+ u2−2

v2),

which factorizes as

(u4v + uv4)(u1/2v + uv1/2) + (u2v + uv2)(u1/4v + uv1/4) = 0 (9)

Now perform the substitution u → zv in (9) and divide by v2 to obtain

v9/2(z + z4)(z + z1/2) + v9/4(z + z2)(z + z1/4) = 0. (10)

For fixed v ∈ kerLb, any z satisfying u = zv ∈ kerLb for some u also satisfies
(10). Since each z is uniquely determined by u for fixed nonzero v, the number
of solutions to (10) gives an upper bound on | kerLb|.

Observe that the solution set (in z) of (10) is an F2-linear space. Let w = z+z2

and rewrite (10) to get

0 = v9/2(w + w2)w1/2 + v9/4w(w1/2 + w1/4), (11)
= v9/4(v9/4w5/2 + (v9/4 + 1)w3/2 + w5/4). (12)
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The solution set of (12) is also an F2-linear space, say K. Since x �→ x2 + x is a
2-1 map on L, there are at most 2 solutions z in L satisfying w = z2 + z.

Now divide (12) by v9/4w to obtain the polynomial

Gv(w) := v9/4w3/2 + (v9/4 + 1)w1/2 + w1/4,

whose set of zeroes is K. Suppose that r, w, r + w are all solutions of (12) in K.
We have

0 = Gv(r) + Gv(w) + Gv(r + w),
= v9/4(w3/2 + r3/2 + (r + w)3/2),
= v9/4(r1/2w + rw1/2),

which gives
rw2 + r2w = 0. (13)

For fixed r �= 0, (13) has only 2 solutions in w since rw2 + r2w is quadratic in w.
On the other hand, 0, r, w, w + r are all solutions of (13). We deduce that either
w = 0 or w = r, so there exist at most 2 distinct members w of kerLb satisfying
w = z2 + z.

We deduce that | kerLb| ≤ 4 and hence that fW (a, b) is 3-valued for n odd,
and is 5-valued for n even.

Corollary 1. Let f(x) = x3 + Tr(x9) as in Theorem 1. Then the distribution
of values in the Walsh spectrum of f is the same as the distribution of the Gold
functions.

Proof: By Theorem 1 we know that the Walsh spectrum is contained in {0, ±2
n+1
2 }

when n is odd, and {0, ±2
n
2 , ±2

n+2
2 } when n is even. In either case the spectrum is

at most 5-valued. Let NV be the number of times the value V is taken by fW (a, b).
For any APN function, it is well known (see [5] for example) that

∑
V V jNV is

uniquely determined for j = 0, 1, 2, 3, 4. These five equations determine the NV

uniquely. 	
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Abstract. Non-linear cryptanalysis is a natural extension to Matsui’s linear
cryptanalitic techniques in which linear approximations are replaced by non-
linear expressions. Non-linear approximations often exhibit greater absolute bi-
ases than linear ones, so it would appear that more powerful attacks may be
mounted. However, their use presents two main drawbacks. The first is that in
the general case no joint approximation can be done for more than one round of a
block cipher. Despite this limitation, Knudsen and Robshaw showed that they can
be still very useful, for they allow the cryptanalist greater flexibility in mounting a
classic linear cryptanalysis. The second problem concerning non-linear functions
is how to identify them efficiently, given that the search space is superexponential
in the number of variables. As the size of S-boxes (the elements usually approx-
imated) increases, the computational resources available to the cryptanalyst for
the search become rapidly insufficient.

In this work, we tackle this last problem by using heuristic search techniques
–particularly Simulated Annealing– along with a specific representation strategy
that greatly facilitates the identification. We illustrate our approach with the 9×32
S-box of the MARS block cipher. For it, we have found multiple approximations
with biases considerably larger (e.g. 151/512) than the best known linear mask
(84/512) in reasonable time. Finally, an analysis concerning the search dynamics
and its effectiveness is also provided.

1 Introduction

The adoption of the Data Encryption Standard (DES) [26,27] provided an extraordinary
stimulus for the development of public cryptology, and particularly for the advancement
of modern cryptanalytic methods. In the context of DES analysis, Reeds and Manfer-
delli [28] introduced in 1984 the idea of “partial linearity”, pointing out that a block
cipher with such a characteristic may be vulnerable to known- or chosen-plaintext at-
tacks faster than exhaustive key search. Chaum and Evertse subsequently extended the
notion of a per round linear factor to that of “sequence of linear factors” [5], proving
that DES versions with more than 5 rounds had no partial linearity caused by such a
sequence. These concepts were later generalized to that of “linear structure” [8], which

S.D. Galbraith (Eds.): Cryptography and Coding 2007, LNCS 4887, pp. 99–117, 2007.
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embraced properties such as the complementarity of DES or the existence of bit inde-
pendencies (i.e. some bits of the ciphertext being independent of the values of certain
plaintext and key bits), among others.

In a sense, linear cryptanalysis constituted the natural extension to these efforts. Lin-
ear cryptanalysis was introduced by Matsui in [17] as a potential technique to attack
DES. Its applicability was corroborated soon after [18], in what is commonly accepted
as the first –although barely practical at the time– compromise of the cipher.

Several refinements to the basic idea of linear cryptanalysis have attempted to im-
prove the efficiency of the attacks, either in specific circumstances or in all cases. As
soon as 1994, Kaliski and Robshaw proposed an extension based on the use of multi-
ple linear approximations [13]. Harpes, Kramer and Massey [11] presented in 1995 a
generalisation in which linear expressions are replaced by I/O sums. An I/O sum is the
XOR of a balanced binary-valued function of the input and a balanced binary-valued
function of the output.

Beyond these improvements, the most natural idea is to consider whether the lin-
ear approximations can be replaced with non-linear approximations. In 1996, Knudsen
and Robshaw introduced the idea of extending Matsui’s linear cryptanalytic techniques
to the more general case in which non-linear relations are also considered [15]. To
motivate this approach, they provide a practical example showing that it is feasible to
obtain much more accurate approximations to DES S-boxes by considering non-linear
relations instead of linear ones. In that same work, they identified non-linear approxi-
mations to the S-boxes of LOKI91 [2], a DES-like block cipher that operates on 64-bit
blocks and uses a 64-bit key. One of the most remarkable features of LOKI91 is that it
uses four identical S-boxes which map 12 to 8 bits. While the three best linear approx-
imations known to these S-boxes exhibited biases of 88/4096, 108/4096 and 116/4096,
the authors found non-linear relations with biases of 136/4096, 130/4096 and 110/4096.

1.1 Motivation and Related Work

Linear cryptanalysis was proposed to attack block ciphers and mainly applied to Feistel-
like constructions [9]. In this type of design, the overall effect of a round is entirely
linear (and often independent of the key) except for a single component, which is typ-
ically implemented using one or more S-boxes. It is precisely in this context wherein
the search for (linear) approximations of these components makes sense.

As S-boxes (especially in the past) were often fairly small, the search space in which
to look for linear approximations was small enough, in many cases allowing an exhaus-
tive search in a reasonable amount of time. As a result, the method for determining the
best linear approximation has not been itself a matter of extensive study (an early ex-
ception to this was [19]). However, the situation becomes dramatically different when
considering non-linear approximations: there are 22n

different Boolean functions of n
variables (recall that only 2n are linear). Even for a low number of inputs (e.g. n = 8)
the search space is astronomically huge, so a brute-force approach will simply not work.

There is, however, a different but very related field that has been tackled quite suc-
cessfully by applying heuristic search techniques: the design and analysis of crypto-
graphic Boolean functions.
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The design of Boolean functions with desirable cryptographic properties (e.g. high
non-linearity, low autocorrelation, high algebraic degree, reasonable order of correla-
tion immunity, etc.) has traditionally been a central area of cryptological research. In
the latter half of the 1990s, a few works suggested that heuristic search techniques
could be applied to efficiently derive good Boolean functions. Millan et al. [20] were
the first to show that small changes to the truth table of Boolean functions do not rad-
ically alter their non-linearity nor their autocorrelation properties. This provides for an
efficient delta-fitness function for local searches. Later works by the same authors (e.g.
[21]) demonstrated that Boolean functions that are correlation-immune or satisfying the
strict avalanche criterion can be found too with smart hill-climbing.

This approach was subsequently generalized in a number of ways. Millan et al. ap-
plied it to the design of bijective [22] and regular [23] S-boxes. Clark and Jacob used
Simulated Annealing in [6] to achieve some results hitherto unattained by other means.
Some of the results presented in that work constituted also a counter-example to a then
existing conjecture on autocorrelation.

1.2 Contribution and Overview

The main purpose of this paper is to show that heuristic methods very similar to that
used for designing cryptographic Boolean functions can be applied to find non-linear
approximations to S-boxes. In Section 2 we introduce some basic concepts on non-
linear cryptanalysis, with particular emphasis in the elements which are essentially dif-
ferent to linear cryptanalysis. We describe our approach and the experimental setup
used in Section 3. The most relevant results of the experiments carried out are shown
in Section 4, together with an analysis concerning the efficiency and statistical signifi-
cance of the search. Finally, in Section 5 we make a few concluding remarks and outline
some possible extensions to this work.

2 Basic Concepts of Non-linear Cryptanalysis

Consider an n variable Boolean function f : GF (2n) → GF (2). The (binary) truth
table (TT) of f is a vector of 2n elements representing the output of the function for
each input. Each Boolean function has a unique representation in the Algebraic Normal
Form (ANF) as sum of product terms:

f(x1, . . . , xn) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn

a12x1x2 ⊕ · · · an−1,nxn−1xn

⊕ · · · ⊕ a1,...,nx1x2 · · · xn

(1)

The order of each product term in the ANF is defined as the number of variables
the product term contains. The algebraic order of f , denoted ord(f), is the maximum
order of the product terms in the ANF for which the coefficient is 1.

There are other widely-known representations of Boolean functions, such as the po-
larity truth table or the Walsh-Hadamard spectrum, which nonetheless shall not be used
in this work.
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The Hamming weight of a Boolean function f of n variables, denoted by hw(f), is
the number of ones in its TT:

hw(f) =
2n−1∑

x=0

f(x) (2)

A function f is said to be balanced iff hw(f) = 2n−1.
Let x = (x1, x2, . . . , xn) and ω = (ω1, ω2, . . . , ωn) be binary n-tuples, and:

ω · x =
n⊕

i=1

ωixi (3)

their dot product. Then the linear function Lω(x) is defined as Lω(x) = ω · x. The set
of affine functions consists of the set of linear functions and their complements. Note
that every linear function is balanced.

A n × m substitution box (or simply S-box) is a mapping from n input bits to m
output bits. It can also be viewed as an ordered set of m Boolean functions of n variables
each.

2.1 Non-linear Approximations to S-Boxes

In the following definitions S represents a n × m S-box, x = (x1, . . . , xn) the input to
S, and y = (y1, . . . , ym) the corresponding output. For compatibility with the notation
often used in the literature on linear cryptanalysis, we shall write the inner product
ω · x of two binary n-tuples ω and x, as x[ω]. We shall keep this notation even when
approximations are not linear, i.e. if f is a non-linear function, then x[f ] = f(x). An
exception to this is the output produced by S-boxes, which always shall be written as
S(x).

Definition 1. A non-linear approximation for S is a pair

A = 〈Γx, Γy〉 (4)

where Γx : GF (2n) → GF (2) and Γy : GF (2m) → GF (2).

It should be clear that, even though the domains of Γx and Γy are, respectively, GF (2n)
and GF (2m), in order for them to be cryptanalytically useful they must not depend on
all the variables in x and y. This implies that it must be possible to write them as
functions in GF (2n̂) and GF (2m̂), respectively, with n̂ < n and m̂ < m.

Definition 2. Let A = 〈Γx, Γy〉 be a non-linear approximation and PS(A) the proba-
bility that the relation:

x[Γx] ⊕ S(x)[Γy ] = 0 (5)

holds for an S-box S. Let PR(A) be the probability that the same relation holds for a
random n × m bit permutation R. The deviation of A with respect to S, denoted by
δS(A), is given by:

δS(A) = PS(A) − PR(A) (6)
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Definition 3. The absolute value of the deviation is called the bias of A with respect to
S:

εS(A) = |δS(A)| (7)

When the context will be clear enough, the subscript S will be omitted for denoting the
deviation and bias.

2.2 Computing the Bias of a Non-linear Approximation

The computation of PS(A) can be done by exploring the 2n possible inputs to S(x)
and checking how many times expression (5) holds. In cases where n is large, a random
sampling over the inputs will provide an estimation of PS(A).

On the other hand, the computation of PR(A) depends on the Hamming weight of
the functions integrating the approximation. Under the assumption of randomness of x,
we have that:

Px(0) = Prob
(
x[Γx] = 0

)
= 1 − 1

2n
hw(Γx) (8)

Px(1) = Prob
(
x[Γx] = 1

)
=

1
2n

hw(Γx) (9)

Py(0) = Prob
(
R(x)[Γy ] = 0

)
= 1 − 1

2m
hw(Γy) (10)

Py(1) = Prob
(
R(x)[Γy ] = 1

)
=

1
2m

hw(Γy) (11)

Expression (5) can be now computed by simply applying the definition of the sum
over GF(2):

PR(A) = Px(0) · Py(1) + Px(1) · Py(0) (12)

Substituting and regrouping terms we have:

PR(A) =
1
2n

hw(Γx) +
1

2m
hw(Γy) − 2

2n+m
hw(Γx) · hw(Γy) (13)

A particularly interesting observation is that if at least one of the two functions (e.g.
Γx) is balanced, then:

PR(A) =
1
2n

hw(Γx) +
1

2m
hw(Γy) − 2

2n+m
hw(Γx) · hw(Γy)

=
1
2n

2n

2
+

1
2m

hw(Γy) − 2
2n+m

2n

2
· hw(Γy) =

1
2

(14)

The same is applicable in case of Γy being balanced. Note that this is precisely the
case when one of the two functions is linear. In these cases, calculating the bias is
considerably more efficient.

2.3 Joint Approximations, Limitations and Cryptanalytic Utility

In order to make a practical use of a non-linear approximation to an S-box, one needs
to extend it into an approximation across the entire round function. This task is usually
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strongly dependant on the particular structure of the round function used and the way
its output is subsequently processed through the rest of operations comprising a round.

In nearly all cases, a common problem is how to relate the input to the S-box with the
actual inputs to the round function. The usual operation of a round function consists in
first combining certain key bits (or a subkey) with some bits from the input data block,
and then apply the S-box to the result. Suppose that d and k are the input data block
and key to a round function, respectively, and that both are of the same length. Assume
that the round function operates by applying an S-box to x = d ⊕ k. In case of L being
a linear approximation, the dependency on the key can be easily peeled off, since:

x[L] = (d ⊕ k)[L] = d[L] ⊕ k[L] (15)

However, it is not generally possible to do this for a non-linear approximation. Further-
more, the actual approximation applied depends on the specific values of d and k. A
detailed analysis of this phenomenon along with specific examples of how to approxi-
mate a round function can be found in [15] and [25].

Consider now a Feistel cipher [9] where the input data to round i is denoted as
Ci−1

h and Ci−1
l (the high-order and low-order halves of the data block, respectively).

The action of the round function will be denoted by f(Ci−1
l , ki), ki being the subkey

corresponding to this round. With this notation, the output from the ith round is written
as Ci

h = Ci−1
l and Ci

l = Ci−1
h ⊕ f(Ci−1

l , ki).
If α, β, γ and δ are linear masks specifying a selected subgroup of bits, then a linear

approximation to a single round can be written as [15]:

Ci−1
h [α] ⊕ Ci−1

l [β] = Ci
h[γ] ⊕ Ci

l [α] ⊕ ki[δ] (16)

Rewriting previous expression as:

Ci−1
l [β ⊕ γ] ⊕ ki[δ] = Ci−1

h [α] ⊕ Ci
l [α] = (Ci−1

h ⊕ Ci
l )[α] (17)

we obtain an approximation to round i.
Assume now that f(α) is a non-linear function. Again, it is obvious that the relation:

(Ci−1
h ⊕ Ci

l )[f(α)] = Ci−1
h [f(α)] ⊕ Ci

l [f(α)] (18)

will not generally hold.
In summary, one-round approximations that are not-linear in the output bits from

f(Ci−1
l , ki) cannot be generally joined together. However, as noted by Knudsen and

Robshaw in [15], they can be useful in a number of ways. For the first and last rounds
of a cipher, the input to an approximation need not to be combined with any other ap-
proximation. Therefore, non-linear approximations can be used in these rounds without
concern. Moreover, both the 1R- and 2R-methods of linear cryptanalysis proposed by
Matsui (see [17]) require that some bits of the input to the second (or penultimate) round
will be available to the cryptanalyst. By using this fact, non-linear approximations can
be used in these rounds too.

The previous applications of non-linear approximations may allow the cryptanalyst
to recover, in some circumstances, more key bits less plaintexts than required by lin-
ear techniques. As an example, in [15] it is shown how a non-linear cryptanalysis of
reduced-round LOKI91 [2] allows to recover 7 additional key bits with less than 1/4 of
the plaintexts required by linear techniques.
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3 Heuristic Search for Non-linear Approximations

We wish to explore the space of possible approximations by searching for a solution
that maximises the bias as defined by expression (7). The search space has a size of
O(22n+2m

), n and m being the input and output sizes of the S-box, respectively. Ob-
viously, this makes exhaustive search impossible (by standard computation means, at
least) even for relatively low values of n and m.

In the experiments reported in this paper, we have used the well-established tech-
nique of Simulated Annealing [14]. A description of its operation is provided in Ap-
pendix B. In order to apply it to our problem, we have to provide three basic elements:
a descriptive characterisation of the search space (i.e. a representation for solutions), a
move function defining a neighbourhood for each element in the search space, and a
fitness (or cost) function measuring how good a potential solution is. Next we describe
these three components.

3.1 Solutions

The representation and operations for evolving Boolean functions used in this work
are based on those provided by Fuller, Millan and Dawson in [10]. Each candidate
approximation A is a structure comprising functions Γx and Γy , as given by Definition
1. Function Γx is represented by three elements:

– The number n̂ < n of variables of the approximation.
– The TT of the non-linear approximation (of n̂ variables).
– An injective function J : Zn̂ → Zn assigning each variable in the approximation

to one input variable of the S-box. We shall represent J by a vector with its values:
(J(0), J(1), . . . , J(n̂−1)). The terms n̂ and dim(J) shall be used interchangeably.

The purpose of J is to project the non-linear function into some of the input bits of
the S-box. This is necessary due to the reasons previously discussed –only approxima-
tions making use of some input and output bits are cryptanalytically useful.

The next example illustrates how this structure should be interpreted. Suppose S is a
4 × 8 S-box, n̂ = 3, and an approximation for the input variables is given by:

Γ (z0, z1, z2) = z0 ⊕ z0z1 ⊕ z0z1z2

Assuming J1 = (1, 3, 0), the projection of Γ into the input bits of S is given by:

Γ J1
x (x0, x1, x2, x3) = x1 ⊕ x1x3 ⊕ x1x3x0

while for J2 = (0, 2, 1) it would be:

Γ J2
x (x0, x1, x2, x3) = x0 ⊕ x0x2 ⊕ x0x2x1

Note that, given an input approximation and fixed values for n and n̂, the number of
different projections is exactly the number of permutations:

Pn
n̂ =

n!
(n − n̂)!

(19)
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As it will be discussed later, this value should be taken into account when defining some
of the search parameters.

A similar representation could be provided to Γy . In our experiments, however, we
decided to let it simply be a linear mask rather than a general non-linear function.
This presents some remarkable advantages. From a complexity standpoint, it reduces
the amount of space required to represent a solution, reduces considerably the search
space, and also makes the search much faster (recall that linearity in one function im-
plies a much simpler way of computing the bias of the whole approximation). Moreover,
S-boxes are non-linear in their input bits, so it seems reasonable to look for approxi-
mations with non-linearity just in them, even though non-linear combinations of output
bits might have some cryptanalytic interest too.

3.2 Move Function

To obtain a candidate A′ ∈ N(A) in the neighbourhood of A, we have defined a move
function governed by five parameters:

– The values Px and Py , with:

0 ≤ Px ≤ Py ≤ 1
Px + Py ≤ 1

which define if a neighbour of A will be obtained by changing Γx, Γy or J , and
keeping the other two unaltered. Specifically:

◦ Px is the probability of moving Γx,
◦ Py − Px is the probability of moving Γy , and
◦ 1 − Py is the probability of moving J .

– The parameters Cx, Cy and CJ control how many elements of Γx, Γy or J , respec-
tively, will be mutated. In case of Γx and Γy , this is the number of bits to be flipped,
while for J it defines the number of elements in the projection to be substituted by
a new one. This new component is randomly generated and, as J is an injective
function, must be different to each element already present in J .

The basic operation of the move function is described in Fig. 1.

3.3 Evaluation and Fitness

The fitness function used to guide the search is simply the bias achieved by the approx-
imation:

F (A) = ε (20)

as defined by expression (7). This is computed by generating the 2n different input
values to the S-box. Each value is then translated to the corresponding projected value
according to J , and the output value produced by Γx is stored. For the same (not pro-
jected) input value, the actual output produced by the S-box is computed and the mask
Γy is applied. The resulting value is stored together with the previous one.



Non-linear Cryptanalysis Revisited: Heuristic Search for Approximations to S-Boxes 107

1 Pick u ∈ [0, 1] with uniform probability
2 if 0 ≤ u ≤ Px then
3 for i = 1 to Cx

4 Pick r ∈ [0, 2n̂ − 1] with uniform probability
5 Flip bit r in the TT of Γx

6 else if Px < u ≤ Py then
7 for i = 1 to Cy

8 Pick r ∈ [0, m − 1] with uniform probability
9 Flip bit r in the TT of Γy

10 else if Py < u ≤ 1 then
11 for i = 1 to CJ

12 Pick r ∈ [0, n̂ − 1] with uniform probability
13 Pick v ∈ [0, n − 1] with uniform probability, and such that v /∈ J
14 J(r) ← v

Fig. 1. Move function for evolving functions Γx and Γy, and projection J

Upon reaching the end of the process, the bias can be calculated as:

ε =
∣
∣∣
∣
E

2n
− 1

2

∣
∣∣
∣ (21)

E being the number of times both outputs coincided. For subsequent analysis, it is also
useful to define this magnitude in absolute terms:

Hits = |E − 2n−1| (22)

so the bias can be represented as Hits/2n (recall the maximum value for Hits is 2n−1).
Here it is important to note that, under the assumption of random input, the expected
hit rate is 0 due to the linearity of Γy . In a general case where Γx and Γy are both
non-linear, the expected hit rate has to be computed as described in Section 2.2.

4 Experimental Results and Analysis

We have applied the technique briefly described above to the S-box included in the
block cipher MARS [4]. MARS was IBM’s candidate submission to the AES contest
and, as such, is nowadays a quite well-studied scheme.

One of the core components of MARS is a 9 × 32 S-box with very specific combi-
natorial, differential and linear correlation properties. This S-box was the outcome of
a search process that took IBM about a week of intensive computation. Burnett et al.
showed in [3] that 9×32 S-boxes with cryptographic properties clearly superior to those
of MARS S-box can be found with heuristic search methods in less than 2 hours on a
single PC. In 2000, Robshaw and Yin [29] made some comments about the resistance
of this S-box to linear cryptanalysis, challenging the claims by IBM’s designers. Soon
after, Knudsen and Raddum [16] found a large number of linear approximations with
biases higher than 2−3, again contradicting a conjecture made by the designers. Among
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the 871 linear masks found in that work, the best exhibits a bias of 82/512. Soon after,
Aoki was able to compute the complete distribution of MARS’s S-box linear masks [1],
finding that the best linear approximation had a bias of 84/512.

In response to these criticisms, the MARS team issued some comments (see e.g.
[12]) pointing out that some of their claims were poorly worded and hence easily mis-
interpreted. Basically, they argued that it is the MARS core function which actually has
no bias higher than a given magnitude (2−3), but not specific components such as, for
example, the S-box itself.

One of the reasons for choosing MARS S-box to illustrate our approach is (apart
from the fact that it was one of the five AES finalists) precisely the existence of linear
masks with such a large bias. From this point of view, finding non-linear approximations
with biases much larger than those –and in considerably less time– is an interesting
challenge.

4.1 Parameterisation

In our preliminary experimentation, we found that the search dynamics is quite sensitive
to the values (Px, Py, Cx, Cy , Cj) required by the move function. For the last three, the
best results are systematically found when the number of changes is low. This seems
reasonable, since a strong mutation of a candidate implies an abrupt move in the search
space, often resulting in a loss of many of the properties obtained so far.

Concerning the probabilities of mutation assigned to each component, the probabil-
ity of moving J should be somehow related to the number of different projections as
defined by expression (19). If the number of possible projections is large and the as-
sociated probability low, the search will be mostly devoted to find functions that “fits”
a projection which is rarely changed. Alternatively, when the number of projections is
relatively low, a high probability will result in an inefficient search eventually repeating
candidate solutions.

In our experiments, the best results were obtained by using the parameterisation
shown in Table 1. The probability of moving J is decreased as the number of possi-
ble permutations gets lower. A probability higher than 0.5 did not demonstrate better
performance.

Each inner loop tries 10000 moves, and the number of inner loops is bounded by
1000. The search stops whenever this number is reached or after 250 consecutive inner
loops without improvement.

4.2 Results

We ran 25 experiments for each value of n̂ from 2 to 8. Each experiment takes around
1 hour in a PC (Intel Pentium 4 CPU 2.80 GHz with 1 GB RAM.)

For values of n̂ from 2 to 4, no approximation better than the best known linear mask
was found. In these cases, the functions found exhibit biases between 60 and 75. This
is also the case for n̂ = 5, even though eventually we found two approximations with
bias 83/512, i.e. very similar to the best linear mask.

In the case of approximations using 6, 7 or 8 out of the 9 input bits, the results were
considerably better, achieving approximations with an average bias of around 89, 110
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Table 1. Simulated Annealing parameters

GENERAL

Max. No. inner loops 1000
Max. No. moves in inner loop 10000
Max. No. failed inner loops 250
Initial temperature 200
Cooling rate 0.99

EVALUATION: MARS S-box

n 9 bits
m 32 bits

MOVE FUNCTION

n̂ = 8 → (Px, Py , Cx, Cy, CJ ) = (0.25, 0.25, 1, 1, 1)
n̂ = 7 → (Px, Py , Cx, Cy, CJ ) = (0.30, 0.30, 1, 1, 1)
n̂ = 6 → (Px, Py , Cx, Cy, CJ ) = (0.35, 0.35, 1, 1, 1)
n̂ = 5 → (Px, Py , Cx, Cy, CJ ) = (0.40, 0.40, 1, 1, 1)
n̂ = 4 → (Px, Py , Cx, Cy, CJ ) = (0.45, 0.45, 1, 1, 1)
n̂ = 3 → (Px, Py , Cx, Cy, CJ ) = (0.45, 0.45, 1, 1, 1)
n̂ = 2 → (Px, Py , Cx, Cy, CJ ) = (0.45, 0.45, 1, 1, 1)

and 140, respectively. Fig. 2 shows the bias distribution for the 25 approximations found
in each case.

The best among them constitute certainly an interesting result. For n̂ = 8, we found
an approximation with bias 151/512, which translates to a deviation of around 0.29.
Something similar occurs for n̂ = 7 and 6, for which the best approximations show
deviations of 0.23 and 0.18, respectively. A remarkable point is the effectiveness of the
search: even though finding the “best” approximation for a given number of input bits
may require several runs, the search consistently provides good candidates.

Finally, the two best approximations found for 6, 7 and 8 variables are provided in
Appendix A.

4.3 Effectiveness of the Heuristic

Now we provide a brief analysis concerning the statistical significance of our results.
The purpose of this is to show that the search is indeed effective, i.e. it behaves consid-
erably better than what should be expected from a pure blind search.

Computing the bias of a given approximation to MARS S-box can be seen as per-
forming 512 experiments, each of which can result in a 1 (real and predicted output
match) or 0 (when not). If we perform 512 independent experiments of a Binomial
B(1, 1/2), the result, by the additive property of the Binomial probability distribution,
should behave as a B(512, 1/2), whose standard deviation is σ =

√
0.5 · 0.5 · 512 =√

128. It is well known that in certain conditions (n ≥ 30, np ≥ 5 and n(1 − p) ≥ 5),
a Binomial B(n, p) can be accurately approximated by a N(np, np(1 − p)). As these
conditions clearly hold in our case, we can safely approximate a B(512, 1/2) by a
N(256, 128); or, equivalently:

E − 256√
128

=
±Hits√

128
∼ N(0, 1) (23)

E being, as in (21), the number of times both outputs match. Even if the S-box were
generated completely at random, if the number of experiments is high enough, a ran-
dom search would find candidates increasingly “better.” Therefore, the number of total
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80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160
Bias

dim(J) = 6 

dim(J) = 7 

dim(J) = 8 

dim(J) = 6

Bias Number of
Solutions

80 2
83 4
86 2
87 3
88 1
89 2
90 4
91 2
92 4
93 1

dim(J) = 7

Bias Number of
Solutions

95 1
100 1
101 1
102 2
103 1
106 5
107 1
108 3
109 2
112 4
115 2
118 2

dim(J) = 8

Bias Number of
Solutions

127 1
129 1
131 1
132 1
135 1
136 3
137 1
138 2
140 2
141 1
143 3
144 2
145 2
147 2
148 1
151 1

Fig. 2. Bias distribution for 25 experiments with dim(J) = 6, 7 and 8. Each boxplot has lines at
the lower quartile, median, and upper quartile values. The lines extending from each box show
the extent of the rest of the data.
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Table 2. Statistical significance for some bias values

Bias Equivalent value observed in a N(0, 1) Probability

150/512 13.25 3.00 × 10−39

140/512 12.37 2.36 × 10−34

130/512 11.49 8.57 × 10−30

120/512 10.61 1.43 × 10−25

110/512 9.72 1.22 × 10−21

100/512 8.84 4.28 × 10−18

90/512 7.95 7.53 × 10−15

80/512 7.07 5.58 × 10−12

evaluations performed during the search process (say I) should be somehow incorpo-
rated into the analysis. For our purposes, if:

1 − 1
I

= erf(
n√
2
) (24)

where:

erf(x) =
2√
π

∫ x

0
e−t2dt (25)

is the Gauss error function, then we should expect a number of hits at around n standard
deviations from the mean.

In the case of the best approximations obtained for n̂ = 8, a bias of 151/512 im-
plies 151 hits, which translates to 151/σ � 13.35 standard deviations away from the
mean. This is statistically equivalent to observe a value of around 13.35 coming from
a N(0, 1), an extremely unusual event with an associated probability of occurrence of
around 7.95 × 10−40. This means that by following a pure blind search, the average
number of evaluations required to yield this number is around 7.95 × 1040. Recall that
our search is bounded by 107 evaluations (actually, in most cases the stopping criterion
is met at around 106; this shall be discussed below.)

Table 2 shows the equivalent value observed in a N(0, 1) and its associated proba-
bility for some values in the range of the best approximations found in our experimen-
tation. From a simple inspection of these numbers, it should be clear that the heuristic
is effectively achieving solutions that, otherwise, would not have been feasible to a
random search.

4.4 Search Dynamics

Figure 3 shows the evolution of the fitness value associated with the best candidate
found so far in a typical search. Around the first 500000 movements are completely
random, during which the algorithm tries to locate a good candidate in the search space.
In almost all the executions tried, the next behaviour has been identical: once an “ap-
propriate” candidate is found, its fitness is considerably incremented in the next 500000
movements. This corresponds to the rapid growth observed in the curve, during which
the resulting candidate is constantly refined until no more improvement can be done.
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Fig. 3. Search dynamics during a typical running. The graph shows the evolution of the bias
corresponding to the best approximation found so far.

In nearly all cases, the search stops improving solutions at around 1 or 1.2 millions of
evaluations (i.e. 100 inner loops). After that, the next 250 cycles are completely useless
and, therefore, the stop criterion is met and the search stops. This behaviour suggests
that the stopping criterion can be greatly relaxed, stopping the search after 80 or 100
non-improving inner loops, instead of 250. This would result in searches of around 40
minutes of running time each, rather than the 1 hour on average pointed out previously.

4.5 Discussion

The heuristic is obviously working at improving the quality of the candidates, reaching
approximations that might not have been found by a blind search. However, though
effective, we are probably not using an optimal approach in the search. It is not clear
to us whether the fitness function is appropriate for providing guidance, so alternative
measures should be considered. Moreover, a restriction of the search space could be
useful too. In a similar problem, Millan et al. [24] showed how searching over the space
of ANFs of Boolean functions of degree less than or equal to n/2 can be used to provide
Bent functions of highest possible degree. In [7], Clark et al. searched over the space
of Walsh spectra for a permutation of an initial spectrum that corresponds to a Boolean
function.
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One of the most interesting features of both papers is that the form of representation
used greatly facilitates the restriction of the possible solutions. In Millan et al.’s work,
bent function theory shows that the maximal algebraic degree is n/2, and so restricting
the space to functions with terms of or lower than this degree is clearly well motivated
(and ANF is an obvious form to enforce this restriction).

In work of Clark et al., working over permutations of a supplied Walsh spectrum
allows various Walsh values to be fixed at convenient values. This allows criteria such
as balance, non-linearity and correlation immunity to be “assigned”. Walsh spectra are
transformed to polar vector form and it is the Boolean-ness that provides the guid-
ance. Essentially, the function space is the set of all vectors induced under inversion
by Walsh spectral permutations. Some are Boolean functions (with elements of +1 and
−1) whilst others are not. In later work, Stanica et al. [30] applied further restrictions to
the Walsh spectra by considering only rotation symmetric functions –again with hitherto
unattained results. Both the above works demonstrate in different ways the usefulness
of appropriate representations and restrictions.

5 Conclusions

In this work, we have shown how heuristic search methods can be useful to identify
non-linear approximations to S-boxes. The technique seems to be quite effective and
efficient, reaching approximations which can be very useful for mounting a more so-
phisticate linear attack than by simply using linear masks.

Here we have chosen a family of higher order approximations over the input bits of
an S-box. Restricting Γy to be a linear function serves good practical purposes. Also,
under the assumption of bit independence the expected bias for the overall approxima-
tion should be 0 whatever the characteristics of Γx. (This is not essential but is certainly
convenient.) Allowing Γx –along with projection J– to roam free, as it were, over the
space of higher order approximations is, we believe, almost forced by modern cryp-
tographic design! The dangers of linearity are well documented and designers seek to
design out linear attacks. In these cases, a good non-linear approximation can substan-
tially improve a classical linear attack against the cipher.

An additional advantage of our technique is that the search complexity is bounded
by the number of variables desired in the approximation, and not by the actual size of
the S-box. According to our experience, the approximations with highest bias usually
depends on a large number of variables, which certainly poses a problem for the case
of very large S-boxes. However, this method allows a search to be attempted even in
these cases, considering that the space explored depends on how many computational
resources one can afford.
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A Best Approximations Found

dim(J) = 8

ΓX = C3CB0E857D575014CE88552F31EC89AA02489173571719BB7EB48E96C366CD1F
J = (1, 5, 3, 8, 6, 7, 2, 0)

ΓY = 64393DD1
ε = 151/512

ΓX = BDAE5075DB42A75D9279DD3358A4E8907A4C87D61B85D7D137BF7C6DBDF33B71
J = (2, 3, 4, 6, 7, 0, 8, 5)

ΓY = ECACB346
ε = 148/512

dim(J) = 7

ΓX = AF65A106E589F470E043D55CFEAED634
J = (7, 0, 6, 4, 8, 1, 3)

ΓY = 1387BAF2
ε = 118/512

ΓX = 1DE5BC329F1B44356E08BEEA44B48F86
J = (2, 4, 5, 6, 1, 3, 0)

ΓY = 3718E4F8
ε = 118/512

dim(J) = 6

ΓX = 09778AA1F491AD47
J = (7, 8, 3, 4, 2, 0)

ΓY = 87AEA17C
ε = 93/512

ΓX = F4E4ADD42AEAF2B9
J = (4, 7, 2, 3, 5, 1)

ΓY = CD6D89CC
ε = 92/512

B Simulated Annealing

Simulated Annealing [14] is a search heuristic inspired by the cooling processes of
molten metals. Basically, it can be seen as a basic hill-climbing coupled with the prob-
abilistic acceptance of non-improving solutions. This mechanism allows a local search
that eventually can escape from local optima.

The search starts at some initial state (solution) S0 ∈ S, where S denotes the solution
space. The algorithm employs a control parameter T ∈ R

+ known as the temperature.
This starts at some positive value T0 and is gradually lowered at each iteration, typically
by geometric cooling: Ti+1 = αTi, α ∈ (0, 1).

At each temperature, a number MIL (Moves in Inner Loop) of neighbour states are
attempted. A candidate state C in the neighbourhood N(Si) of Si is obtained by ap-
plying some move function to Si. The new state is accepted if its better than Si (as
measured by a fitness function F : S → R). To escape from local optima, the technique
also accepts candidates which are slightly worse than Si, meaning that its fitness is no
more than |T ln U | lower, with U a uniform random variable in (0, 1). As T becomes
smaller, this term gets closer to 0, so as the temperature is gradually lowered it becomes
harder to accept worse moves.
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1 S ← S0

2 T ← T0

3 repeat until stopping criterion is met
4 repeat MIL times
5 Pick C ∈ N(S) with uniform probability
6 Pick U ∈ (0, 1) with uniform probability
7 if F (C) > F (S) + T ln U then
8 S ← C
9 T ← αT

Fig. 4. Basic Simulated Annealing for maximization problems

The algorithm terminates when some stopping criterion is met, usually after a fixed
number MaxIL of inner loops have been executed, or when some maximum number
MUL of consecutive inner loops without improvements have been reached. The basic
algorithm is shown in Figure 4.



Cryptanalysis of the EPBC Authenticated

Encryption Mode

Chris J. Mitchell

Information Security Group, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

c.mitchell@rhul.ac.uk

Abstract. A large variety of methods for using block ciphers, so called
‘modes of operation’, have been proposed, including some designed to
provide both confidentiality and integrity protection. Such modes, usu-
ally known as ‘authenticated encryption’ modes, are increasingly im-
portant given the variety of issues now known with the use of unau-
thenticated encryption. In this paper we show that a mode known as
EPBC (Efficient error-Propagating Block Chaining), proposed in 1997
by Zúquete and Guedes, is insecure. Specifically we show that given a
modest amount of known plaintext for a single enciphered message, new
enciphered messages can be constructed which will pass tests for authen-
ticity. That is, we demonstrate a message forgery attack.

1 Introduction

Traditionally, the recommended way to use a block cipher to provide both in-
tegrity and confidentiality protection for a message has been to encrypt the data
and then compute a CBC-MAC on the encrypted data, using two distinct secret
keys. This approach is rather unattractive for some applications because it re-
quires each block of data to be processed twice. This observation has given rise
to a number of proposals for combining encryption and integrity protection (see,
for example, Sect. 9.6 of [1]).

At the same time, in recent years two major problems have been identified
which have highlighted the need for better-defined integrity and confidentiality
modes. Firstly, issues have been identified with certain combinations of encryp-
tion and use of a CBC-MAC — see, for example, Bellare, Kohno and Nam-
prempre [2]. That is, it is vital to define precisely how the two operations are
combined, including the order of the computations; otherwise there is a danger
of possible compromise of the data. Secondly, even where integrity is not explic-
itly required by the application, if integrity is not provided then in some cases
padding oracle attacks may be used to compromise secret data (see, for example,
[3,4,5,6,7]).

This has given rise to a number of proposals for well-defined authenticated-
encryption modes, including OCB [8], EAX [9] and CCM [10,11]. These tech-
niques are also the subject of ongoing international standardisation efforts —
the third committee draft of what is intended to become ISO/IEC 19772 on
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c© Springer-Verlag Berlin Heidelberg 2007



Cryptanalysis of the EPBC Authenticated Encryption Mode 119

authenticated encryption was published in June 2007 [12] (see also Dent and
Mitchell, [13]).

In this paper we examine another authenticated-encryption mode, known as
EPBC, which was introduced by Zúquete and Guedes in 1997 [14]. We show
that this mode is subject to a message forgery attack using only a modest
amount of known plaintext, and hence does not provide adequate integrity
protection. When combined with other recent cryptanalyses of authenticated-
encrypted modes [15], this emphasises the need to only use modes which have
robust evidence for their security, e.g. OCB, EAX or CCM.

2 Integrity Protection

Before discussing any possible attacks, we need to explain how EPBC mode is
intended to be used to provide both confidentiality and integrity protection. The
idea is very simple. First divide the data to be encrypted into a sequence of n-bit
blocks, padding as necessary, where n is the block length for the block cipher
in use. Then append an additional n-bit block to the end of the message, where
this block can be predicted by the decrypter (e.g. a fixed block); this is referred
to as the integrity control value by Zúquete and Guedes [14]. When the message
is decrypted, a check is made that the final block is the expected value and, if
it is, the message is deemed authentic.

Before proceeding observe that this general approach possesses an intrinsic
weakness. That is, suppose that a fixed final block (the terminator block) is used
to detect message manipulations (as above). Then an attacker might be able to
persuade the legitimate originator of protected messages to encrypt a message
which contains the fixed terminator block somewhere in the middle of the mes-
sage. The attacker will then be able to delete all ciphertext blocks following the
encrypted terminator block, and such a change will not be detectable.

Despite this weakness, using an appropriate encryption mode combined with
a method for adding verifiable redundancy to a message is still used for message
integrity protection — e.g. in Kerberos (see, for example, [13]). As far as this
paper is concerned we note that such an attack could be prevented by ensuring
that the legitimate encrypter refuses to encrypt any plaintext message contain-
ing the terminator block. We further note that such an attack requires chosen
plaintext, and the attack we demonstrate later in this paper requires only a
limited amount of known plaintext.

3 The Zúquete-Guedes EPBC Mode

First suppose that the data is to be protected using an n-bit block cipher, i.e. a
block cipher operating on plaintext and ciphertext blocks of n bits. We further
suppose that n is even, and put n = 2m (as is the case for all standardised
block ciphers — see, for example, [16]). We write eK(P ) for the result of block
cipher encrypting the n-bit block P using the secret key K, and dK(C) for the
result of block cipher decrypting the n-bit block C using the key K. Suppose the
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plaintext to be protected is divided into a sequence of n-bit blocks (if necessary,
having first been padded): P1, P2, . . . , Pt.

The scheme uses two secret n-bit Initialisation Vectors (IVs), denoted by F0
and G0. The EPBC encryption of the plaintext P1, P2, . . . , Pt is then defined as:

Gi = Pi ⊕ Fi−1, (1 ≤ i ≤ t), (1)
Fi = eK(Gi), (1 ≤ i ≤ t), (2)
Ci = Fi ⊕ g(Gi−1), (2 ≤ i ≤ t), (3)

where C1 = F1 ⊕ G0, ⊕ denotes bit-wise exclusive-or, and g is a function that
maps an n-bit block to an n-bit block, defined below. The operation of the mode
(when used for encryption) is shown in Figure 1. Note that we refer to the values
Fi and Gi as ‘internal’ values, as they are computed during encryption, but they
do not constitute part of the ciphertext.

Fig. 1. EPBC encryption

The function g is defined as follows. Suppose X is an n-bit block, where
X = L||R and L and R are m-bit blocks (and, as throughout, || denotes con-
catenation). Then

g(X) = (L ∨ R)||(L ∧ R)

where ∨ denotes the bit-wise inclusive or operation, ∧ denotes the bit-wise logical
and operation, and X denotes the logical negation of X (i.e. changing every zero
to a one and vice versa).

Finally, note that decryption operates similarly. We have:

Fi = Ci ⊕ g(Gi−1), (2 ≤ i ≤ t), (4)
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Gi = dK(Fi), (1 ≤ i ≤ t), (5)
Pi = Gi ⊕ Fi−1, (1 ≤ i ≤ t). (6)

and F1 = C1 ⊕ G0, where d denotes block cipher decryption.

4 Some Preliminary Observations

We first establish some simple results on the operation of the EPBC scheme. In
particular, we consider the operation of the function g.

Lemma 1. Suppose g(X) = L′||R′, where X is an n-bit block and we let L′ =
(�′1, �

′
2, . . . , �

′
m) and R′ = (r′1, r

′
2, . . . , r

′
m) be m-bit blocks. Then, for every i (1 ≤

i ≤ m), if �′i = 0 then r′i = 0.

Proof. Let X = L||R, where L = (�1, �2, . . . , �m) and R = (r1, r2, . . . , rm).
Suppose �′i = 0 for some i. But, by definition, �′i = �i ∨ ri, and hence �i = ri = 0.
Hence r′i = �i ∧ ri = 0. �

The above Lemma implies that output bit pairs (�′i, r
′
i) can never be equal

to (0,1). In fact, we can obtain the following more general result which gives
Lemma 1 as a special case.

Lemma 2. Suppose that, as above, X = L||R where L = (�1, �2, . . . , �m) and
R = (r1, r2, . . . , rm). Suppose also that g(X) = L′||R′ where L′ = (�′1, �′2, . . . , �′m)
and R′ = (r′1, r

′
2, . . . , r

′
m). Then if (�i, ri) ∈ A then (�′i, r

′
i) ∈ B, where all possi-

bilities for A and B are given in Table 1. Note that, for simplicity, in this table
we write xy instad of (x, y).

Table 1. Input/output possibilities for g

A (set of input pairs) B (set of output pairs)

{00, 01, 10, 11} {00, 10, 11}
{01, 10, 11} {00, 10, 11}
{00, 10, 11} {10, 11}
{00, 01, 11} {00, 10}
{00, 01, 10} {00, 10, 11}

{10, 11} {10, 11}
{01, 11} {00, 10}
{01, 10} {00, 11}
{00, 11} {10}
{00, 10} {10, 11}
{00, 01} {00, 10}

{11} {10}
{10} {11}
{01} {00}
{00} {10}
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Proof. The result follows from a simple case by case analysis. �

Before proceeding we make a general observation which underlies the attack
procedure described below. That is, given a random set A of any particular size
(not equal to 1), then the expected value of |B| is always smaller than |A|.

5 Attack Stage 1 — Deducing Internal Pairs

The objective of this stage of the attack is to use knowledge of known plain-
text/ciphertext pairs (Pi, Ci) to learn the values of corresponding ‘internal pairs’
(Fi, Gi). In the second stage of the attack, described in Sect. 6, we show how to
use these internal values to complete a forgery attack on EPBC mode.

Suppose an attacker knows s consecutive pairs of plaintext/ciphertext blocks
for some s > 1. That is, suppose

(Pj , Cj), (Pj+1, Cj+1), . . . , (Pj+s−1, Cj+s−1)

are known, where we also suppose that j > 1.
First observe that we know that Cj = Fj ⊕ g(Gj−1) (since j > 1). From

Lemma 1, we also know that, if g(Gj−1) = L′||R′ where L′ = (�′1, �
′
2, . . . , �

′
m)

and R′ = (r′1, r
′
2, . . . , r

′
m), then (�′i, r′i) can never equal (0,1) for any i. Hence

knowledge of Cj will immediately yield knowledge about Fj . Specifically, it will
yield the information that certain bit pairs cannot occur in Fj , where each bit
pair contains a bit from the left half and the corresponding bit from the right
half. More precisely, given that there are m such bit pairs in Fj , and for each
such pair one of the four possible bit pairs will be ruled out, the number of
possibilities for Fj will be reduced from 22m to 3m.

Using Lemma 2, we can extend this observation making use of subsequent
plaintext/ciphertext block pairs. Since Gj+1 = Pj+1 ⊕ Fj , information about
forbidden bit pairs in Fj , combined with knowledge of Pj+1, gives information
about forbidden bit pairs in Gj+1. This yields information about (potentially)
even more forbidden bit pairs in g(Gj+1). Given that

Cj+2 = Fj+2 ⊕ g(Gj+1),

and given knowledge of Cj+2, this gives even more information about forbidden
bit pairs in Fj+2, and so on.

That is, it is possible to deduce increasing amounts of information about the
sequence of n-bit blocks:

Fj , g(Gj+1), Fj+2, g(Gj+3), . . . .

Hence, assuming that we know sufficiently many pairs to perform the calcula-
tions, for sufficiently large w there will only be one possibility for Fj+2w . Using
knowledge of Pj+2w+1, this immediately gives certain knowledge of Gj+2w+1.
I.e., for all sufficiently large values of w, complete knowledge can be obtained of
Fj+2w and Gj+2w+1.
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In the above discussion we did not use all the available information to make the
deductions. In fact we only used knowledge of Cj , Cj+2, Cj+4, . . . and Pj+1, Pj+3,
Pj+5, . . .. We have also only shown how to derive information about Fj , Fj+2,
Fj+4, . . . and Gj+1, Gj+3, Gj+5, . . ..

However, we can simply repeat the above argument starting with Fj+1, us-
ing the remainder of the information available. That is, repeating the pro-
cess starting one block later will enable the deduction of information about
Fj+1, Fj+3, Fj+5, . . . and Gj+2, Gj+4, Gj+6, . . .. Finally note that the above anal-
ysis does not make use of knowledge of Pj , only of Cj .

The above discussion has been rather informal, in that ‘sufficiently large’ has
not been quantified. However, Lemma 2 enables us to make this more precise.

Consider any pair of bit positions in an n-bit block: (i, i + m), say, where
1 ≤ i ≤ m. Then, from Lemma 1, we know that g(Gj−1) cannot have (0,1) in
these two bit positions. Hence, given knowledge of Cj , we know that the bits
in positions (i, i + m) in Fj = Cj ⊕ g(Gj−1) can only take three of the four
possible values. Precisely which three possibilities will depend on the pair of bits
in positions (i, i + m) in Cj , which we assume are randomly distributed.

As a result we know that the bits in positions (i, i+m) in Gj+1 can only take
three of the four possible values. From an examination of Table 1, the number
of possibilities for the bits in positions (i, i+m) in g(Gj+1) will either be two or
three, depending on the three possibilities for the bit pair in Gj+1. Specifically,
there is a 50% chance that there will only be two possibilities for the bit pair in
Gj+1, and a 50% that there will be three possibilities for the bit pair in Gj+1.

Extending this analysis using standard probabilistic arguments for stochastic
processes, it follows that the probability p that there will only be a single possi-
bility for the bit pair after v iterations of the above process is equal to the bottom
left entry in the vth power of the four by four matrix given in Figure 2. The
entry in the i row and the jth column of this matrix represents the probability
that a set A of size i will map to a set B of size j (as derived from Table 1).
Some values of this matrix entry (i.e. of p) for various values of v are given in
Table 2.

⎛

⎜
⎜
⎝

1 0 0 0
1/6 5/6 0 0
0 1/2 1/2 0
0 0 1 0

⎞

⎟
⎟
⎠

Fig. 2. Transition probability matrix

That is, after 30 iterations, i.e. given knowledge of 60 consecutive plain-
text/ciphertext pairs, the probability p that a bit pair will be known with cer-
tainty is 0.99241. We are actually interested in the probability q that an entire
n-bit block will be known with certainty. It is straightforward to verify that

q = pn/2.
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Table 2. Probability of a unique possibility for a bit pair

v prob. p v prob. p v prob. p

10 0.71027 20 0.95305 30 0.99241
40 0.99878 50 0.99980 60 0.99997

Table 3. Probability of a unique possibility for a 128-bit block

v prob. q v prob. q v prob. q

10 very small 20 0.04607 30 0.61409
40 0.92485 50 0.98728 60 0.99808

In Table 3, this probability is tabulated for the same values of v as given in
Table 2, assuming the use of a 128-bit block cipher.

Hence, for such a cipher, if 60 consecutive pairs of plaintext/ciphertext blocks
are known (bearing in mind that each iteration involves alternate blocks), then
there is a 60% chance that the final internal variables Fi and Gi will be com-
pletely known. This probability increases to nearly 99% if 100 consecutive block
pairs are available.

6 Attack Stage 2 — Completing the Forgery

We now suppose that the attack procedure described in the previous section has
been completed, i.e. matching pairs of consecutive plaintext/ciphertext blocks
have been used to learn internal values Gi, for some i. We suppose also that the
EPBC mode is being used to provide both confidentiality and integrity using a
fixed n-bit integrity control value V . That is, when a message is decrypted, the
final plaintext block must equal V if the message is to be accepted as genuine.
To demonstrate a forgery attack, we therefore need to show how to construct a
message for which this will be true.

We suppose that the following resources are available to an attacker.

– An encrypted message C1, C2, . . . , Ct for which the attacker knows the in-
ternal value Gs, for some s ≤ t.

– The final two blocks (C′
u−1, C′

u) of an encrypted message for which the
attacker also knows the internal value G′

u−2. Note that we are assuming
that P ′

u = V , where P ′
u is the final plaintext block corresponding to this

enciphered message.

Note that we assume also that the same secret key K has been used to compute
both the ciphertexts involved (in fact, the same message could be used to yield
both of the sets of values required).

We now define the ‘forged’ ciphertext message C∗
1 , C∗

2 , . . . , C∗
s+2 as follows:

C∗
i = Ci, (1 ≤ i ≤ s),
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C∗
s+1 = C′

u−1 ⊕ g(G′
u−2) ⊕ g(Gs), and

C∗
s+2 = C′

u.

It remains to show that, when the above forged message is decrypted, the
final recovered plaintext block will equal V . Suppose that, when decrypting
C∗

1 , C∗
2 , . . . , C∗

s+2, the internal values are F ∗
i and G∗

i (1 ≤ i ≤ s + 2).
We first note that it follows immediately from the definitions that F ∗

i = Fi and
G∗

i = Gi (1 ≤ i ≤ s), where Fi and Gi are the internal values generated during
the encryption process that yielded the ciphertext message C1, C2, . . . , Ct. We
now consider the decryption of C∗

s+1.
We have

F ∗
s+1 = C∗

s+1 ⊕ g(G∗
s) (from Sect. 3)

= C′
u−1 ⊕ g(G′

u−2) ⊕ g(Gs) ⊕ g(G∗
s) (by defn. of C∗

s+1)
= C′

u−1 ⊕ g(G′
u−2) (since G∗

s = Gs)
= F ′

u−1.

Hence G∗
s+1 = G′

u−1.
We now consider the decryption of C∗

s+2. We have

F ∗
s+2 = C∗

s+2 ⊕ g(G∗
s+1) (from Sect. 3)

= C′
u ⊕ g(G′

u−1) (by defn. of C∗
s+2)

= F ′
u.

Hence G∗
s+2 = G′

u. Finally, we have

P ∗
s+2 = G∗

s+2 ⊕ F ∗
s+1 (from Sect. 3)

= G′
u ⊕ F ′

u−1 (from above)
= P ′

u

= V,

as required.

7 Further Observations

7.1 Attack Performance

It is of interest to try to understand the overall complexity of the attack de-
scribed above, i.e. to understand what information is required to complete an
attack, and what computations need to be performed. For a 128-bit block ci-
pher, we have shown in Sect. 5 that knowledge of 80 consecutive pairs of known
plaintext/ciphertext blocks will be very likely to yield certain knowledge of the
‘final’ internal variable Gi.
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Thus, if the attacker has access to two messages encrypted using the same key,
and the attacker knows the final 80 plaintext blocks for both messages (as well as
the ciphertext), then the attacker will almost certainly have sufficient informa-
tion to perform the procedure described in Sect. 6. The computations involved
in both stages of the attack are trivial — indeed, they involve only a small
number of computations of the (very simple) function g, and some exclusive-or
operations on pairs of blocks.

Thus the attack will have a relatively high success probability given only a
modest amount of known plaintext, and the computations involved are com-
pletely trivial.

7.2 The Choice for the Function g

As should be clear from the discussions above, completing the attack as described
in Sect. 6 requires knowledge of internal variables Gi. It is possible to learn these
values as a result of the procedure described in Sect. 5; this procedure only works
because the function g is non-bijective, and has a very simple structure. This
raises two questions.

Firstly, why is the function g chosen to be non-bijective? Secondly, if there is
a good reason to use a non-bijective function, then why not use one with less
obvious structure?

The answer to the first question can be found in the original paper of Zúquete
and Guedes [14]. As stated in [14], EPBC is very similar to a previously devised
mode called IOBC, proposed by Recacha in 19961. Indeed, the only difference
is that the function g used in IOBC is bijective, involving some fixed bit per-
mutations. However, as very briefly outlined in [14], IOBC is subject to known-
plaintext attacks if the message being encrypted contains more than n2/4 blocks,
where n is the block cipher block length, i.e. around 4000 blocks for AES. The
exact attack approach is not clear from [14], which states that a detailed descrip-
tion can be found in the 1996 paper of Recacha. Because of the existence of this
attack, EPBC was designed to use a non-bijective function g, which (apparently)
rules out the known-plaintext attacks applying to IOBC.

The answer to the second question is less clear. Obviously, g could be im-
plemented using one or more block cipher encryptions, which, if done correctly,
would certainly remove the simple structures exploited in Sect. 5. However, such
an approach would significantly increase the complexity of the mode of oper-
ation, and one of the main design goals was to devise a scheme with minimal
complexity. Designing a function g which is both sufficiently complex to prevent
attack, but is nevertheless very fast to perform would, perhaps, be an interesting
research question; however, given that highly efficient provably secure authenti-
cated encryption modes are now known to exist (as discussed in Sect. 1), this is
probably not likely to be a particularly fruitful line of enquiry.

1 Unfortunately, the 1996 Recacha paper cited in [14] does not appear to be readily
available.
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8 Summary and Conclusions

In this paper we have demonstrated a forgery attack against EPBC mode when
used to provide message integrity. This attack required only known plaintext
(and no chosen plaintext). We can therefore conclude that this mode is unaccept-
ably weak, and should therefore not be used. (Whilst it is probably an effective
mode for encryption only, much simpler modes are known for this purpose).

If both confidentiality and integrity protection are required, then encryption
and a MAC should be combined in an appropriate way, or a dedicated ‘authenti-
cated encryption’ mode should be used — see, for example, ISO/IEC 19772 [12].
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Abstract. Here, we present a generalized notion of online modes of en-
cryption that make one call to a pseudorandom permutation per block of
plaintext. This generalization, called “Canonical Form,” not only allows
for modes of encryption to be written in a common format, but pro-
vides for easy proofs of blockwise-adaptive chosen-plaintext (BACPA)
security/insecurity.

We also develop necessary and sufficient conditions for security of a
mode of encryption in Canonical Form. As an application, we write ten
modes of encryption in Canonical Form, and we prove the security status
(under BACPA) of nine of them. While most of these modes already
had proven BACPA security status in previously published papers, it is
hoped the more general method specified here will be of use in writing
simpler proofs for other modes, including modes of encryption yet to be
developed.

BACPA is a model for adversaries slightly more powerful than those in
traditional chosen-plaintext attack. In particular, instead of forcing the
target to encrypt messages of his/her own choosing, the attacker can in-
sert blocks of his/her own choosing into the target’s messages [JMV02].
Some modes of encryption which are secure against traditional CPA,
for example the ubiquitous Cipher Block Chaining (CBC), are insecure
against BACPA. Several papers have been written to explore BACPA
and modes of encryption under it.

Keywords: Modes of Encryption, Blockwise-Adaptive Chosen-Plaintext
Attack, BACPA, MACPA, Online-ness, ECB, CBC, CTR, OFB, CFB,
IGE, ABC, HCBC, HPCBC, XCBC.

1 Introduction

In 2002, [BKN02] and [JMV02], simultaneously discovered an attack on CBC.
This attack was similar to but not within the scope of chosen plaintext at-
tack (CPA). In [JMV02] the latter was renamed messagewise-adaptive CPA
(MACPA), and a new notion, called blockwise-adaptive chosen-plaintext attack
or BACPA was created.

The difference between MACPA and BACPA is simple: Instead of inserting
messages of his/her own choosing into the target’s message stream, the attacker
can insert blocks of his/her own choosing into the target’s messages. Some modes
that are insecure against BACPA are secure against MACPA, for example, CBC
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and IGE. Others are secure against both, like CTR and OFB. But any method
secure in the BACPA model is also secure in the MACPA model, as well as
the known-ciphertext and known-plaintext models. Thus, BACPA serves as a
convenient notion for expressing security against all adversaries less powerful
than chosen-ciphertext attacks (CCA).

A natural question that may arise in discussion of any attack model of any kind
is that of feasibility. So far, two papers have been published (that we are aware of)
which demonstrate cryptographically feasible attacks against systems currently
in use. One is the original paper which gave birth to the subject [BKN02] by
showing the attack on the Secure Shell or SSH. This attack was placed in the
environment of the Secure Sockets Layer (SSL) in [Bar06a]. See those papers for
more details.

Many different types of modes of encryption exist but a crucial and large
category are those which are online. Unfortunately, there are conflicting ideas
of what constitutes an online cipher. A necessary requirement is that when en-
crypting a message P1, P2, . . . , Pn, the corresponding ciphertexts C0, C1, . . . , Cn

must be computable such that Ci does not depend on Pj for j > i. Note the
value C0 is the initialization vector. We discuss why this notion of online-ness is
important in Section 2.2. In [BT04], it is suggested that ciphers which allow Pi

to be decrypted upon receipt of C0, C1, . . . , Ci, but before receipt of the whole
message, be designated “online with decryption on the fly”. We suggest denoting
these notions as “almost online” and “fully online.” But in this paper, we always
mean the stricter condition of “fully online.”

To examine the relationships between these two notions of “BACPA” and
online-ness, we prove four theorems. But first we introduce a Canonical Form.
Any mode of encryption which can be written with at most one call to the
pseudorandom permutation per plaintext block can be written in Canonical
Form. This format yields very simple proofs of security in the BACPA model.
The first is that a BACPA attack in the left-or-right indistinguishability model
need only have one block in which the left and right plaintexts are unequal.
We call BACPA attacks which are restricted in this way “primitive”, and show
that primitive BACPA security is necessary and sufficient for BACPA security in
general. We define three notions, the first two of which, entropy-preserving and
collision-verifiable, we believe nearly all modes of encryption will have. The third
is collision-resistance. In the second theorem, we show that if a scheme is entropy-
preserving, then collision resistance is sufficient for BACPA security. In the third
theorem, we show that if a scheme is collision-verifiable, then collision-resistance
is necessary for BACPA security. It follows immediately that if a scheme is both
collision-verifiable and entropy preserving, it is BACPA secure if and only if it
is collision resistant, which is the fourth theorem.

We then examine actual modes of encryption. Ten are presented here. For ex-
ample, two of them, Electronic Code Book (ECB) and Infinite Garble Extension
(IGE), are insecure against MACPA and so they are obviously insecure against
BACPA. On the other hand, CBC and certain forms of P-ABC (public accumu-
lated block ciphers), are proven insecure against BACPA even though they are
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MACPA secure. Counter Mode (CTR), Output Feedback Mode (OFB), Cipher
Feedback Mode (CFB), Hash Cipher Block Chaining (HCBC), Hash Permuted
Cipher Block Chaining (HPCBC), and certain forms of (Secret Accumulated
Block Ciphers) S-ABC are proven BACPA secure. Finally, we were unable to
determine the status of Extended Cipher Block Chaining, or XCBC, although
we can write it in Canonical Form.

The rest of the paper is organized as follows. In Section 1.1, we discuss pre-
vious work on BACPA. We give some background and definitions in Sections 2
and 3 respectively. The theorems are stated, and Theorems 2–4 are proven, in
Section 4. In Section 5, we show which modes are insecure against BACPA, in-
cluding explicit attacks. The appendices contain proofs of security for several
modes that are BACPA secure, the proof of Theorem 1, and a presentation of
XCBC in Canonical Form, even though we cannot provide a security proof of it,
nor an attack against it, at this time.

1.1 Previous Work on BACPA

As stated earlier, the first published paper in this topic was Bellare, Kohno, and
Namprempre [BKN02], wherein the vulnerability in SSH was observed (and fixes
proposed). Simultaneously to this, Joux, Martinet, and Valette further identified
three additional operational attacks of similar form to Bellare’s attack on SSH,
naming this new class of attacks “blockwise-adaptive CPA” [JMV02]. Also intro-
duced in that paper is “blockwise-adaptive CCA”. It was in this paper that an
ingeniously straight-forward response to BACPA was defined, namely Delayed-
CBC mode. However, as explained in [BT04], it does not allow for decryption-
on-the-fly, and so is not considered here.

Fouque, Joux, Martinet, and Valette next provided the first security defini-
tions for blockwise-adaptive CPA and CCA [FJMV03]. The paper was geared
to smart cards in authentication devices, and so is a somewhat different con-
text than on-line schemes. They propose a generic model, Decrypt-then-Mask,
proved to be blockwise-adaptive CCA secure under certain conditions, and an
example of it, CBC-MAC. However, none of these schemes are on-line and so
are not included here.

Boldyreva and Taesombut, focusing on on-line schemes in general, showed that
neither HCBC nor any on-line scheme in general is CCA secure under the gen-
eral definitions of Fouque, et al. [BT04]. Instead, they define a slightly different
security definition, IND-BLK-CCA. They prove that the mode HPCBC, which
is a variation on HCBC, is IND-BLK-CCA secure. We analyze both HPCBC and
HCBC, and prove them blockwise-adaptive CPA secure as well, which confirms
their results.

At almost the same time, Fouque, Martinet, and Poupard [FMP03] expanded
the idea of Delayed-CBC presented in their previous paper to include a general
notion of a delayed cipher. Moreover, these authors introduce an adversary with
concurrent access to multiple blockwise oracles. All previous papers had limited
the adversary to sequential access to the oracle, as does this paper. The authors
proved that both delaying modes and CFB are secure under their model.
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Fouque, Joux, and Poupard [FJP04] expanded the definitions of security in
the messagewise case into the blockwise case. That paper examines the relation-
ships between indistinguishability in the Left-Or-Right, Real-Or-Random and
Find-Then-Guess senses, in the attack models of messagewise chosen-plaintext
attack, and blockwise-adaptive chosen-plaintext attack with either sequential
or concurrent adversaries. An analysis of these security goals for the message-
wise case and their relationships is found in Katz and Yung [KY00]. The notion
used for security in our paper is LORS-BCPA in their notation, meaning that
the adversary is given blockwise capability in every stage of the attack, but for
sequential messages (i.e. not for concurrent messages).

1.2 Previous Work on Modes of Encryption

The case of ECB is somewhat obvious. The insecurity of IGE (in the MCPA and
thus BACPA context also) was demonstrated by [GD00] and [BBKN01]. Of the
three modes that fail unconditionally, the case of CBC was the only one to be
MCPA secure, and was the very first mode of encryption to be proven insecure
in BACPA but not MACPA, simultaneously in [BKN02] and [JMV02].

Of the five modes that pass, the security of the first, or Counter Mode (CTR),
was proven independently by [FJP04] and this author [Bar06b]. Next, Cipher
Feedback Mode (CFB) was first proven independently by [BT04], [FMP03] and
this author [Bar06b]. We believe we are the first to show the security of the next
two modes, Output Feedback Mode (OFB) and Hash Cipher Block Chaining
(HCBC) against BACPA in [Bar06b]. The proof of security of Hash Permuted
Cipher Block Chaining (HPCBC) was proven by [BT04] as implied by proving
what they denote IND-BLK-CCA, a modified form of BACPA that adds limited
chosen-ciphertext capabilities to the adversary.

Finally, we believe that we are the first to analyze ABC in the BACPA context.

1.3 Notation

We denote by x
R← S that x is an element of the set S chosen uniformly at

random. The algorithms in this paper are in terms of a secret key sk of length
k, which was presumably generated by sk

R← {0, 1}k.
The symbol x||y means x concatenated to y.
We define modes of encryption in terms of a block cipher F : {0, 1}k ×

{0, 1}� → {0, 1}�. We will write F (sk, P ) = C as Fsk(P ) = C. We assume
(as is standard) that F is a pseudorandom permutation family.

2 Background

2.1 Blockwise Encryption Schemes

An encryption scheme is a quadruple of a positive integer and three algorithms
{�, K, E, D}. The positive integer � is the block size. The first algorithm is a
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key generation algorithm K, which does not concern us, and which outputs sk.
Next an algorithm Esk(P ) → C takes a plaintext and produces a ciphertext.
The plaintext is a bit string, with length a positive integer multiple of �. The
ciphertext is of the same length, but with a “prefix” of zero or one blocks in
length. A decryption function also exists, Dsk(C) = P , to map ciphertexts back
to their corresponding plaintexts. However, in some systems, Dsk will output a
special symbol ⊥, which means that the ciphertext was invalid, forged, or im-
proper in some way, and that it should be disregarded. Both of these algorithms
are indexed by sk, the secret key, which can alternatively be thought of as an
extra parameter.

All encryption schemes discussed in this paper are assumed to be correct. An
encryption scheme is correct if and only if Dsk(Esk(P )) = P for all messages
P , with probability one. It is a tautological consequence of this definition that
A �= B implies Esk(A) �= Esk(B). The correctness property forces Dsk to be
deterministic, but Esk is quite often a randomized algorithm.

2.2 Online Modes of Encryption

Unfortunately, two different notions of online-ness exist in the literature.
The first requirement is that as Esk(P1, P2, . . . , Pn) = C0, C1, . . . , Cn is com-

puted, it must be the case that Ci not depend on Pj for all j > i. Formally, it
must be possible in polynomial time to compute Ci knowing only P1, . . . , Pi and
sk. At first, this seems like a strange distinction. But it is equivalent to saying
that E can be computed in one pass (even if it is not actually computed that
way). This paper only deals with online schemes but most encryption schemes
relating to block ciphers in the literature are online with this definition.

The primary reason for concern of this type is encryption in small devices
like smart cards. In particular, a smart card might not have enough memory
for storing all the plaintext of a message. Such storage would be needed in a
two-pass algorithm, but in a one pass algorithm, Ci could be transmitted, and
Pi discarded before Ci+1 was calculated. Dependencies between blocks could
be maintained by state variables. Another example is a tiny sensor in a large
network. It may be expected to broadcast data over a month-long period. Using
a two-pass scheme would require enormous storage. Finally consider a service
that sells movies over the internet, which are encrypted. If the entire movie
needed to be read from storage and encrypted, and only then transmitted, the
user might lose patience. If transmission could occur a few seconds into the
encryption process, and proceed as a stream, then this might be more tolerable
for users.

The second requirement was identified by [BT04], but may have been men-
tioned earlier. It should be possible to decrypt Ci into Pi without Cj for j > i.
Formally, it must be possible in polynomial time to compute Pi given only sk
and C0, C1, . . . , Ci. At first glance, this seems very similar to the previous def-
inition. In [BT04], this is denoted “online with decryption on-the-fly,” because
online already implies encryption on-the-fly.
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But consider the very common Encrypt-then-MAC strategy. The ciphertext is
computed with a CPA-secure encryption scheme. Then that ciphertext is input
to a message-authentication code (MAC). The tag outputted by the MAC is
included as part of the ciphertext. Upon receipt, the decoder first verifies that
the cipher is authentic by first computing his/her own tag and comparing it to
the tag provided. If the tags match, only then is the decryption algorithm called.
Otherwise the ciphertext is discarded as a forgery. This results in a CCA-secure
scheme. Unfortunately, the entire ciphertext must be available in order for the
computation of the tag to be completed.

Consider the internet movie provider mentioned above. The entire movie
would have to be resident on the machine, and the tag checked, before the
first frame could be shown. The normal buffering strategy even for services like
U-tube [utu] is that a many minute movie might well take several minutes to
download, but after several seconds (as a buffer) are downloaded, the movie
starts and the download continues in the background. This would be impossible
if a MAC was being used. Of course, the data can be packeted at a high-level
and the packets can be MAC’ed, but with non-trivial overhead. Likewise, for the
sensor network, the entire month’s data would have to be present for the tag
to be computed, or a packetization strategy used. A counter-argument to the
packetization option comes to mind when considering how the movie viewing
software or a sensor network’s data aggregator should behave if the first packet
passes and the second fails the MAC. Video footage shown to a user cannot be
unshown. A sufficiently strong MAC undoes this objection.

We suggest that schemes which meet the first requirement only be called
“online-1” or “almost-online.” Schemes that meet both should be called “online-
2” or “fully online.” In this paper, we only consider schemes which satisfy both
requirements.

2.3 Modes of Encryption

A mode of encryption is a set of algorithms, which when given some block
cipher F , yield an encryption scheme. The model called “stateful encryption,”
mentioned in for example in [BRS02] but probably defined earlier, and used
here in a slightly modified form, is descriptive of many modes in practice, and is
described below. In Section 3, however, we will propose an alternative notation
called “Canonical Form,” that will enable our proofs.

It should be noted that modes which require two passes over the data, such
as certain implementations of the “encrypt-then-MAC” paradigm, cannot be de-
scribed in the “stateful encryption” model, which allows only one pass. However,
a system that must be written with two or more passes is not online, because Ci

must have some dependency on Pj for j > i (otherwise it could be re-written to
be executed in one pass).

Prior to encryption or decryption, the plaintext or ciphertext is divided into
blocks of length �, the block-length of the block cipher. We writeP=P1, P2, . . . , Pn.
In this paper, we are not concerned with padding, so we assume that the plaintext
can always be evenly divided into blocks.
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First, an algorithm Beginsk() will output an initial state s1, and an initializa-
tion vector C0. Second, an encryption algorithm Esk(Pi, si) will take as inputs
the secret key, the plaintext, and the current state. It will output the next ci-
phertext block Ci, and the next state, si+1. The state is some binary string,
the format and significance of which depends on the chosen mode of encryp-
tion. However, typical choices for the state are the previous ciphertext block,
the previous plaintext block, or a counter.

For decryption, an algorithm Setupsk(C0) will output an initial state s1, based
on C0. From there, a decryption algorithm Dsk(Ci, si) will return the next plain-
text block Pi, and the state si+1. This function is called repeatedly until all the
ciphertext blocks are decrypted. If any ciphertext block causes Dsk to yield ⊥,
then the entire ciphertext should be considered to decrypt to ⊥. In this paper,
we are not concerned with decryption and so we will not mention Setup or Dsk

again.

Esk(P )
1. Divide P into P1, . . . , Pn,

blocks of length � bits.
2. (C0, s1) ← Beginsk

3. Output C0
4. For i = 1, 2, . . . , n do

(a) (Ci, si+1) ← Esk(Pi, si)
(b) Output Ci

Dsk(C)
1. Divide C into C0, C1, . . . , Cn,

blocks of length � bits.
2. s1 ← Setupsk(C0)
3. For i = 1, 2, . . . , n do

(a) (Pi, si+1) ← Dsk(Ci, si)
(b) Output Pi

4. If any of P1, . . . , Pn =⊥,
abort.

All of these algorithms are in terms of an abstract block cipher F . Only when
a specific block cipher F is chosen, can they be used. Thus the choice of block
cipher is a hidden input to the various functions, but to write that would only
clutter the notation.

Given the above, and the assumption that no padding is ever required, it is
very easy to see how to generate Esk and Dsk from Initsk, Esk, Setupsk and
Dsk. For key generation, K : sk

R← {0, 1}k, where k is the key-length of the
block cipher, is used. Thus every mode of encryption, coupled with a block
cipher, produces an encryption scheme. Lastly, note that in practice, improper
padding can lead to attacks, such as [Vau02].

This model is similar to that used in Bellare and Boldyreva’s several papers
[BKN02], [BBKN01], [BDJR97], [BT04] as well as [FJP04]. In Section 3.1 we
will propose an alternative model, called “Canonical Form”, which allows for
very simple proofs of BACPA security.

2.4 The BACPA Game

Before we formally define the BACPA left-or-right indistinguishability game, we
will generally describe the MCPA and MACPA left-or-right indistinguishability
games to build intuition. Also, we will avoid the cumbersome phrase “left-or-
right indistinguishability game” and simply say “game” for the remainder of the
paper.
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Loosely speaking, the messagewise-CPA game, for an encryption scheme E,
proceeds as follows. A secret key is generated, sk

R← {0, 1}k, and a secret coin is
tossed: b

R← {0, 1}. The adversary is presented with an oracle that takes as input
two messages P 0, P 1, and outputs Esk(P b). The adversary composes a set of
challenges (A0, A1); (B0, B1); . . . and transmits them to the oracle. The oracle
returns Esk(Ab), Esk(Bb), . . . Now the adversary makes a guess b̂ of the value of
b. If it turns out that b = b̂ then adversary wins, and if not, loses. Of course, the
adversary is limited to polynomial time.

Suppose that A1 was very long and that A0 was very short. Then E(Ab) would
be easily determined to be either E(A1) or E(A0) by its length. Therefore, it is re-
quired that |A1| = |A0|, and so forth for all pairs, but it can be that |A1| �= |B1|.
Finally note that since the adversary runs in polynomial time (compared to k),
it will always be the case that only polynomially many messages are transmitted
and their total length is upper-bounded by a polynomial in terms of k.

In the messagewise-adaptive-CPA game, or MACPA, the procedure is slightly
different. Here the adversary submits A0, A1 and receives back Esk(Ab). Only
then does he/she submit B0, B1. Information obtained from the first oracle
output can be used to determine the second oracle inputs, and so forth. Thus
the name adaptive. This is the traditional model of CPA in cryptography.

In the BACPA game, blocks rather than messages will be submitted. Since
this game requires “blocks”, it must be described using a more restrictive model
than just a blockwise encryption scheme. We will use “stateful encryption” as
the model, as is standard.

First, the secret key and fair coin will be generated. Then the adversary will
submit (start, start) (a special symbol created for the game). For each later sub-
mission, the adversary can either submit (start, start) or some pair of blocks
(A0, A1). Upon receipt of (start, start), the oracle begins a new message by
using Initsk and outputs C0, but not s1. Upon receipt of (A0, A1), two plain-
text blocks, the block Ab is selected, and C = Esk(Ab, si) is outputted, but not
si+1. In effect, this means that Ab is appended as the next plaintext block in
the currently-encrypted message. In either case, the adversary is shown the re-
sulting ciphertext block, not the state variable, and is asked for the next query.
This repeats until the adversary submits (stop, stop). The adversary must then
provide a guess b̂, and he/she wins if and only if b = b̂.

Note that it is not permitted for the adversary to submit (A1, start) or
(start, A1) with A1 �= start because this would allow messages of different
length to be present, which cannot be tolerated for reasons explained above.

Definition 1. The advantage of the adversary in the BACPA game is
the absolute value of the difference between the probability that he/she wins and
one-half.

Definition 2. For a mode of encryption S, if the maximum advantage over
all probabilistic polynomial-time (ppt) adversaries, and all choices of Fsk, is
negligible, then the mode of encryption is said to be BACPA-secure.
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Table 1. The BACPA Game

1. b
R← {0, 1}

2. sk
R← {0, 1}k

3. Adversary submits (start, start)
4. (C0, s1) ← Beginsk

5. Transmit C0 to the adversary
6. Done ← 0; i ← 1
7. Do

(a) Obtain a query (A0, A1) from the adversary
(b) If (A0, A1) = (start, start) then

i. (C0, s1) ← Beginsk

ii. Transmit C0 to the adversary
iii. i ← 1

(c) else if A0 = start or A1 = start then HALT
(d) else if A0 = stop or A1 = stop then Done ← 1
(e) else

i. (Ci, si+1) ← Esk(Ab, si)
ii. Transmit Ci to the adversary
iii. i ← i + 1

Until (Done = 1)
8. Request a guess b̂ from the adversary
9. If b = b̂ then tell adversary he/she has won

10. else tell adversary he/she has lost

2.5 Online Encryption and CCA-Security Are Incompatible

This section can be found in the full version of the paper, [Bar06b].

3 Definitions

We introduce in this section several new concepts which enable security proofs
for various modes of encryption.

3.1 Canonical Form

The model described in Section 2.3, called “stateful encryption”, is descriptive
of modes in practice. However, all modes of encryption we are aware of are
based on a single block cipher, and make one call per single block of encryption.
This additional fact allows one to be more specific. To model these modes of
encryption, we define Canonical Form, a model which will enable very simple
proofs of BACPA-security.

A mode of encryption in Canonical Form is a quadruple of algorithms,
{Init, Pre, Post, Update}. The general concept is that the function Esk(Pi, si)
uses some pseudorandom permutation family member Fsk() to calculate the
ciphertext and next state. Therefore consider the following: Some function of
the inputs of Esk is the input to Fsk. Next, some function of the output of Fsk
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and the inputs of Esk becomes the ciphertext block. Finally, some function of
the output of Fsk and the inputs of Esk becomes the next state. This gives rise
to the following quadruple.

– Initsk(k) → (C0, s1)
– Pre(Pi, si) → xi

– Post(Pi, si, yi) → Ci where yi = Fsk(x) = Fsk(Pre(Pi, si)).
– Update(Pi, si, yi) → si+1.

It should be clear that any mode of encryption, that makes exactly one call
to the pseudorandom permutation (Fsk) per plaintext block, can be modeled in
this way. Modes that make more than one call cannot be so modeled, but we are
not aware of any such modes in practice.

Beginsk Esk(Pi, si)
1 return Initsk 1 xi ← Pre(Pi, si)

2 yi ← Fsk(xi)
3 Ci ← Post(Pi, si, yi)
4 si+1 ← Update(yi, Pi, si)
5 return (Ci, si+1)

Technical Note: These four functions are making use of Fsk, but are intended
to define an abstract mode regardless of the choice of F , so long as it is a pseu-
dorandom permutation family. This means that Fsk itself is actually a hidden
parameter of each of these functions, but writing it that way would only clutter
the notation.

Examples: Here we describe CBC, CTR, and OFB as three examples. Later, we
will add ECB, CFB, ABC, IGE, HCBC, HPCBC and XCBC. All ten of these
modes of encryption can be written in Canonical Form.

For CBC, one normally writes:
r1

R← {0, 1}k ; C0 = r1
Ci = Fsk(Ci−1 ⊕ Pi)

However, in Canonical Form:
Initsk(k) : r

R← {0, 1}k ; C0 = s1 = r
Pre(Pi, si) = Pi⊕si; Post(Pi, si, yi) = yi; Update(Pi, si, y) = y

Note: above the state si represents the previous ciphertext. For CTR, the stan-
dard notation is

Initsk(k) : i0
R← {0, 1}k ; C0 = Fsk(i0)

Ci = Fsk(i + i0) ⊕ Pi

However, in Canonical Form:
Initsk(k) : r

R← {0, 1}k ; C0 = Fsk(r); s1 = r + 1
Pre(Pi, si) = si; Post(Pi, si, yi) = y ⊕ Pi; Update(Pi, si, y) =

si + 1
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Note above the state si represents a counter. For OFB, the classic form would
be

x0
R← {0, 1}k ; C0 = x0

xi+1 = Fsk(xi); Ci = xi ⊕ Pi

However, in Canonical Form:
Initsk(k) : r

R← {0, 1}k ; C0 = s1 = r
Pre(Pi, si) = si; Post(Pi, si, yi) = yi ⊕ Pi; Update(Pi, si, yi) =

yi

Note above the state si represents the “recycled” output xi of the pseudoran-
dom permutation Fsk, which is fed back into Fsk during the next block.

From these examples, it should be clear that if {Init, Pre, Post, Update} are
known, and some F is chosen, that Esk and Dsk are completely defined.

3.2 The Collision Game

Informally, the objective of this game is to create a collision in the outputs of Pre.
Since the output of Pre serves as the sole input to Fsk, a collision on the output
of Pre is also a collision on the output of Fsk, and thus provides a potential
opportunity for attack. By collision, it is meant that that the output of Pre is
equal for two distinct blocks, and the block-numbers of that pair are known.
With this objective in mind, the definition is rather straight-forward.

The adversary is given access to a blockwise-encryption oracle Esk(·). The
adversary is not given the state si. This oracle is meant to represent a realistic
blockwise attacker who can submit blocks for encryption and view their cipher-
text, but who does not have access to the internal state of the cipher (though
perhaps he/she may calculate it by other means). The adversary can submit
start queries to begin new messages.

Formally, the game proceeds as follows. A call is made to Esk(start) and the
adversary is given C0. Next, the adversary submits P1, and receives C1. This
continues, submitting Pi and receiving Ci for polynomially many blocks. Some
of the Pi’s might equal start resulting in several, but still polynomially many,
messages. Then the adversary must output a block-number t, and a potential
plaintext P∗. The adversary is successful if the collision would actually occur,
namely Pre(P∗, si) = Pre(Pt, st).

To accommodate several messages, the plaintext blocks should be numbered
only once, not resetting to 1 after each start. Otherwise it is unclear what P1
refers to. To keep the indexes clean, we write si and Ci similarly.

Definition 3. A mode of encryption is said to be collision-resistant if all
pptadversaries have negligible probability of success in the collision game.

3.3 Two More Conditions

We show in Theorem 4 that if the following two security properties hold, then
blockwise-adaptive chosen-plaintext security follows if and only if the mode of
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Table 2. The Collision Game

1. sk
R← {0, 1}k

2. Adversary submits (start, start)
3. (C0, s1) ← Beginsk

4. Transmit C0 to the adversary
5. Done ← 0; i ← 1
6. Do

(a) Obtain a query P from the adversary
(b) If P = start then

i. (Ci, si+1) ← Beginsk

ii. Transmit Ci to the adversary
iii. i ← i + 1

(c) else if P = stop then Done ← 1
(d) else

i. (Ci, si+1) ← Esk(P )
ii. Transmit Ci to the adversary
iii. i ← i + 1

Until (Done = 1)
7. Request (P∗, t) from the adversary.
8. If it is true that Pre(P∗, si) = Pre(Pn, sn) then tell the adversary he/she has won.
9. else tell the adversary he/she has lost.

encryption is collision-resistant. This is intuitive, because the pseudorandom
permutation is the “work horse” of the encryption scheme, and if its input can be
duplicated, then its output will be duplicated. If this condition can be detected,
then an attack against the scheme can be built. (This is essentially how the
original blockwise-adaptive attack operates against CBC mode, as discovered by
Bellare, et al [BKN02]). We go further, and show conditions merely necessary or
merely sufficient for security, see Theorems 3 and 2.

Definition 4. Let S = {Init,Pre,Post,Update} be a mode of encryption in
Canonical Form. Then S is entropy-preserving if, when the plaintext and
state are held constant, the function from y to the ciphertext is injective.

All modes of encryption (that we know of) are entropy-preserving. One should
note that XOR with a constant is an injective map, and this is the most common
function choice for Post along with the identity map (which is also injective). Of
the ten modes of encryption analyzed in this paper, all are entropy-preserving.
Loosely speaking, the reason that this condition would essentially always be
present is as follows:

The “data processing inequality” states that the entropy of f(X), where f
is a function and X is a random variable, is less than or equal to the entropy
of X [CT06, Ch. 2]. The necessary and sufficient condition for equality is an
injective function f . Assume for the moment that y is a random variable with
entropy h, and the plaintext and state are held constant. If Post is injective,
then the ciphertext has entropy h also. Moreover, if Post is not injective, then
the ciphertext has entropy strictly less than h.
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In the proof of Theorem 2, we exploit this property by noting that a uniform
random variable has maximal entropy over its domain, and so if the input y is
uniformly random, and the plaintext and state are fixed, then the ciphertext is
also uniformly random (though possibly over a different set).

A related concept is collision-verifiability.

Definition 5. A mode of encryption {Init,Pre,Post,Update} is collision-
verifiable if there exists an algorithm, such that when given a plaintext mes-
sage P = P1, . . . , Pn, a ciphertext message C = C0, . . . , Cn, and a block number
i, which will with success probability non-negligibly greater than one-half, out-
put one when the outputs of Pre at blocks i and n are equal, (i.e. Pre(Pi, si) =
Pre(Pn, sn) and thus yi = yn) and zero at all other times.

All the modes of encryption analyzed in this paper but XCBC are collision-
verifiable.

3.4 Primitive BACPA Security

In the MACPA case, it turns out only one query of the form (P , Q) with the
messages P �= Q is required. It turns out in BACPA the same is true, that only
one query need have (P, Q) with the blocks P �= Q. The proof proceeds along
similar lines (the hybrid argument). To describe this, we define the following
notion.

Definition 6. For a mode of encryption S, if the maximum advantage over all
probabilistic polynomial-time (ppt) adversaries which happen to restrict them-
selves to only one query of the form (P, Q) with P �= Q, and all choices of Fsk,
is negligible, then the mode of encryption is said to be primitively BACPA-
secure.

The term “primitive BACPA-game” refers to the BACPA-game, but when
the adversary is restricted to at most one query of the form (P, Q) with P �= Q. If
two such queries are submitted the game will react as if (start, Q) was submitted,
with Q �= start.

4 Main Results

Themain result of this paper is the following statement: If{Init, Pre, Post, Update}
is an entropy-preserving and collision-verifiable encryption scheme, then it is
generally blockwise-adaptive chosen-plaintext secure if and only if it is collision-
resistant. This will be proven in three steps, each of which is a theorem below. We
also show that each of the last two conditions results in collision resistance becom-
ing a sufficient/necessary condition, respectively, for BACPA-security.

Theorem 1. Let S={Init,Pre,Post,Update} be a mode of encryption in Canon-
ical Form. Then S is primitively blockwise-adaptive chosen-plaintext secure, if
and only if it is generally blockwise-adaptive chosen-plaintext secure.
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Proof. See AppendixA. The proof is essentially the classical hybrid argument,
(e.g. see [BDJR97], or many other papers ).

Theorem 2. Let S={Init,Pre,Post,Update} be a mode of encryption in Canon-
ical Form. If S is collision-resistant and entropy-preserving, then it is primitively
blockwise-adaptive chosen-plaintext secure.

Proof. Assume S is an entropy-preserving encryption scheme that is collision
resistant. Assume there exists a ppt Algorithm A, which can win the prim-
itive blockwise-adaptive chosen-plaintext game, with non-negligible advantage
δA. Then we will construct a ppt algorithm Dist which will win the pseudo-
random game against Fsk with non-negligible advantage. Since Fsk is assumed
to be pseudorandom, this is a contradiction. Thus Algorithm A does not exist.
Therefore {Init, Pre, Post, Update} is primitive BW-CPA secure (and by the first
theorem, is also generally BW-CPA secure).

Algorithm Dist, attempting the pseudorandom game against Fsk, is given an
oracle F ′, which is either a random function (case 0), or Fsk for a randomly cho-
sen value of sk (case 1). Algorithm Dist will use F ′ with {Init, Pre, Post, Update}
acting as an encryption scheme. It will challenge Algorithm A, and perfectly sim-
ulate the primitive blockwise-adaptive chosen-plaintext game.

If Algorithm A wins the game, Algorithm Dist will guess that F ′ = Fsk for
some sk in the key-space, and output 1. If Algorithm A loses the game, Algorithm
Dist will guess that F ′ is a random function, and output 0. Let us now analyze
both of these cases individually.

The Random Case. Consider the outputs of Pre over the course of the game.
We claim that the probability of any pair of them being equal is negligible. The
reason for this is not obvious. Let the probability of at least one pair of outputs
of Pre being equal be Pe. (Thus with probability 1 − Pe all the outputs of Pre
are distinct).

Let n be the median1 value of the block number of the latter block of the
first matching pair, when at least one pair of outputs is equal. At most half the
time, one block of the first pair will be before block n and its mate will be after
block n. But at least half the time, both blocks of the first pair will be before or
at block n. Thus with probability at least Pe

2 there is at least one pair of blocks
before block n+1, which have equal outputs from Pre.

Algorithm Coll will generate a random number r, taken uniformly from the
set {2, . . . , n}. It will attempt the Collision Game by running a perfect simulation
of the primitive BW-CPA game on behalf of Algorithm A. However, it will halt
Algorithm A immediately after it submits the query request for block r. With
probability 1

(n−1)
Pe

2 , the output of Pre during the encryption of block r will
collide the output of Pre for a previous block.

1 Since the random variable (the block number) is a positive integer, call it z, there
exist many m such that Pr {z ∈ [1, m]} ≥ 1/2. Let the median be the least of all
such m. Since any collection of positive integers has a lower bound, such a median
exists.
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Algorithm Coll doesn’t know which block is the mate for block r, and so will
guess a random value s uniformly from the set {1, . . . , r − 1}. However, this will
be correct with probability at worse 1

r−1 . In the case when block r is indeed
going to cause a collision, the probability that s will be the mate for r is given
by:

1
n − 1

r=n∑

r=2

1
r − 1

=
(

1
n − 1

) (
1 +

1
2

+
1
3

+
1
4

+
1
5

+ · · · + 1
n

)
≈ ln(n) + γ

n − 1

Where γ signifies the Euler-Mascheroni Constant2. The Algorithm Coll thus
produces a correct collision at r while guessing the mate s, (and therefore winning
the collision game) with probability approximately

Pe(ln(n) + γ)
2(n − 1)2

However, we can simplify this by noting that ln(n)+γ
2(n−1)2 > 1

2n2 and so Algorithm
Coll will succeed with probability greater than Pe

2n2 . Since n must be at most
polynomial to k, we know that this success probability will be non-negligible
compared to k if Pe is non-negligible. However, by assumption, the mode is
collision-resistant, and so therefore Pe is negligible.

Thus the outputs of Pre over all blocks of the game are distinct with all
but negligible probability. Furthermore, a series of distinct inputs to a random
function creates a sequence of independent, identically and uniformly distributed
random outputs.

Recall that the inputs to Post are the plaintext to be encrypted, the state
s, and y (which is the output of the pseudorandom function). Further, we re-
quired that Post be one-to-one (an injection) when the plaintext and state are
fixed. Due to this condition, when the y’s are a sequence of uniform independent
and identically distributed variables, the outputs of Post (the ciphertexts) are
also uniform independent and identically distributed variables, or white noise.
These cannot convey any information about the plaintext, and the best that the
Algorithm A can output is a fair coin.

Thus Algorithm A will output a 1 or 0 with probability 1
2 + ε, where |ε| is

negligible. This extra negligible advantage comes from the fact that the acci-
dental collisions described in detail above occur with negligible but non-zero
probability.

The Pseudorandom Case. Here Algorithm Dist is providing Algorithm A
with a perfect simulation of the blockwise-adaptive chosen-plaintext game. There-
fore Algorithm A will be correct with non-negligible advantage δA by assumption.
Thus Algorithm Dist will be correct (output 1) with probability 1

2 + δA.

The Advantage of Algorithm Dist: In the Pseudorandom Case an output of
1 occurs with probability 1

2 +δA, and in the Random Case with probability 1
2 +ε.

2 Recall that Σi=n
i=1

1
i

≈ ln(n) + γ for very large n.
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Thus the advantage of the Algorithm Dist is δA−ε, which is non-negligible. This
is a contradiction, and so we know that Algorithm A must not exist. Therefore
the encryption scheme is primitive blockwise-adaptive chosen-plaintext secure.

Theorem 3. Let S = {Init,Pre,Post,Update} be a mode of encryption in Canon-
ical Form. If S is collision-verifiable, and is primitively blockwise-adaptive chosen-
plaintext secure, then it is collision-resistant.

Proof. SupposeS is collision-verifiable andprimitively blockwise-adaptive chosen-
plaintext secure. Suppose further that it is not collision-resistant.This means there
exists a ppt Algorithm Coll which can win the collision game with non-negligible
probability δC . We will use that algorithm to construct an Algorithm A which wins
the primitive blockwise-adaptive chosen-plaintext game with non-negligible ad-
vantage. This contradicts the security of {Init, Pre, Post, Update} and therefore
Algorithm Coll does not exist, and the mode is collision-resistant.

Algorithm A begins by calling Algorithm Coll. Algorithm A will pass Al-
gorithm Coll’s oracle queries Esk(Pi) to the left-or-right encryption oracle as
LRBW(b,sk)(Pi, Pi), and return the ciphertexts Ci.

When Algorithm Coll terminates, it outputs P∗ and a block number t. Fur-
thermore, if Algorithm Coll wins the collision game, we know Pre(P∗, sn) =
Pre(Pt, st). Let the probability that it wins the collision game be δC .

The split query LRBW(b,sk)(Q, P∗) is now submitted to the blockwise oracle,
where Q �= P∗ is a random string of appropriate length. The output Cn is
received. The collision verification algorithm, which we will denote Algorithm
V er, will now be called. Its inputs are the plaintext message P1 . . . Pn−1P∗ as
well as C0 . . . Cn and the block number t. Let its success probability3 be 1/2+δV .
Algorithm A will output the bit that V er outputs.

If Algorithm Coll has succeeded, and the bit is one, P∗ was encrypted and
so then Pre(st, Pt) = Pre(sn, P∗), and therefore also yt = yn, because yi =
Fsk(Pre(Pi, si)). With probability 1/2+δV , Algorithm V er will output one, and
Algorithm A will be correct. If the bit is zero, then the plaintext block Q and
not P∗ will be encrypted, and so C0 . . . Cn will not decrypt to P1 . . . Pn−1P∗
(since C0 . . . Cn decrypts to P1 . . . Pn−1Q, and A �= B ⇒ Esk(A) �= Esk(B)).
Thus, Algorithm V er will output zero with probability 1/2+ δV , and Algorithm
A will be correct.

If Algorithm Coll has failed, then with probability 1/2 + δV , the verification
algorithm will output zero. If the hidden bit is actually zero, then this is correct.
If the bit is one, then Algorithm A will be wrong. So in this case, Algorithm A
is correct with probability one-half. This is all summarized in Table 3.

AdvA = |Pr[A = 1|b = 0] − Pr[A = 1|b = 1]|
= |[(1/2)(δC)(1/2 − δV ) + (1/2)(1 − δC)(1/2 − δV )]

− [(1/2)(δC)(1/2 + δV ) + (1/2)(1 − δC)(1/2 − δV )]|
= |δCδV |

3 Note, the success probabilities of Algorithm Coll and Algorithm V er are indepen-
dent.
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Table 3. Summary of Probabilities in Theorem 4

Bit b Alg Coll Alg Ver Is yn = yt? Output Probability
0 Succ Succ No 0 (1/2)(δC)(1/2 + δV )
0 Succ Fail No 1 (1/2)(δC)(1/2 − δV )
0 Fail Succ No 0 (1/2)(1 − δC)(1/2 + δV )
0 Fail Fail No 1 (1/2)(1 − δC)(1/2 − δV )
1 Succ Succ Yes 1 (1/2)(δC)(1/2 + δV )
1 Succ Fail Yes 0 (1/2)(δC)(1/2 − δV )
1 Fail Succ No 0 (1/2)(1 − δC)(1/2 + δV )
1 Fail Fail No 1 (1/2)(1 − δC)(1/2 − δV )

Since the system is collision-verifiable δV is non-negligible, and δC is non-negligible
by assumption. Thus the advantage of Algorithm A is then obviously non-
negligible, which contradicts our assumption that Algorithm A is primitive
blockwise-adaptive chosen-plaintext secure. Thus our assumption that the scheme
is not collision-resistant must be false.

Theorem 4. Let S={Init,Pre,Post,Update} be a mode of encryption in Canon-
ical Form. If S is entropy-preserving, and collision-verifiable, then it is generally
blockwise-adaptive chosen-plaintext secure if and only if it is collision-resistant.

Proof. Suppose the scheme is collision-resistant and entropy-preserving. By the
second theorem it is primitively BACPA secure, and thus by the first theorem,
generally blockwise-adaptive chosen-plaintext secure. Alternatively, suppose the
scheme is generally blockwise-adaptive chosen-plaintext secure. Then it is prim-
itively secure, by the first theorem, and since it is collision-verifiable, then by
the third theorem it is collision-resistant.

5 Modes That Fail

Here we will show explicit BACPA attacks for ECB, CBC, IGE, and certain
forms of ABC. In each case, the equality of two ciphertext blocks demonstrates
an internal collision, namely on the input to the pseudorandom permutation
Fsk. Thus, the role of collision-resistance and collision-verifiability is clear. In
particular, each of these modes of encryption are not collision-resistant (because
the attacks exist), and collision-verifiable by means of the equality check which
reveals the collision.

5.1 Electronic Codebook, or ECB

Electronic Codebook Mode, or ECB, is extremely simple but insecure even
against MACPA or MCPA. The definition is Ci = Fsk(Pi), and there is no in-
ternal state, initialization vector, nor a C0. We include it only for completeness.
Consider the following BACPA-game.
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1. Submit (start, start) and receive nothing.
2. Submit (P, Q), with P �= Q and receive C1.
3. Submit (P, P ) and receive C2.
4. If C2 = C1 guess b = 0, else guess b = 1.

Clearly C2 = Fsk(P ). If b = 0 then C1 = Fsk(P ) otherwise C1 = Fsk(Q).
Thus we see that C1 = C2 if and only if b = 0. Therefore, the adversary wins
with probability one, and ECB is not a BACPA-secure mode of encryption.

For completeness, to write ECB in Canonical Form:
Initsk = {} ; Pre(Pi, si) = Pi; Post(Pi, si, yi) = yi; Update(Pi, si, y) = {}.

5.2 Cipher Block-Chaining, or CBC

The definition and Canonical Form of CBC were given in Section 3.1. Consider
the following BACPA-game.

1. Submit (start, start) and receive C0.
2. Submit (P, Q), with Q �= P and receive C1.
3. Submit (P ⊕ C0 ⊕ C1, R), with R �= P ⊕ C0 ⊕ C1, and receive C2.
4. If C2 = C1 guess b = 0, else guess b = 1.

Suppose b = 0. Then C1 = Fsk(C0 ⊕ P ) by the definition of CBC. Then

C2 = Fsk(C1 ⊕ (P ⊕ C0 ⊕ C1))
= Fsk(P ⊕ C0)
= C1

and so it is easy to see that the adversary wins with probability one, and so
CBC is not a BACPA-secure mode of encryption.

5.3 Infinite Garble Extension, or IGE

Infinite Garble Extension was proposed by Campell in 1978 [Cam78]. This mode
is not commonly used but it is a simple example of the broad class of modes
called ABC, which follows as the next example. For IGE one normally writes

Initsk(k) : C0
R← {0, 1}k

Ci = Fsk(Pi ⊕ Ci−1) ⊕ Pi−1
Here, the state is the previous plaintext and the previous ciphertext. The

initial conditions are C0 and P0. There are several possibilities for P0. It can
be some string known to both parties and kept secret from the adversary (thus
becoming part of the key, essentially), or it can be generated by Initsk and
transmitted along with C0.

Assume that P0 is secret, and observe the following attack works anyway.

1. Submit (start, start) and receive C0.
2. Submit (Q, Q) and receive C1.
3. Submit (Q, Q) and receive C2.
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4. Submit (Q ⊕ C2 ⊕ C1, R) with R �= Q ⊕ C2 ⊕ C1 and receive C3.
5. If C2 = C3 guess b = 0 else guess b = 1.

To see why this works, assume b = 0 and observe,

C1 = Fsk(Q ⊕ C0) ⊕ P0

C2 = Fsk(Q ⊕ C1) ⊕ Q

C3 = Fsk((Q ⊕ C2 ⊕ C1) ⊕ C2) ⊕ Q

= Fsk(Q ⊕ C1) ⊕ Q

= C2

Therefore equality will be observed if b = 0. Now suppose the bit b = 1. Surely
by the correctness property, (for the same choices of randomness or initialization
vector) we know Esk(Q||Q||Q⊕C2⊕C1) �= Esk(Q||Q||R), since Q⊕C2⊕C1 �= R.
But by the online-ness property, this inequality cannot occur in the first or second
block. This is because C2 can only depend on P1 or P2 and not upon P3, and
those first two blocks are equal. Therefore, the inequality occurs in the third
block, and so the equality check in the last step of the attack will always be false
because C2 ⊕C3 will have the wrong value. Therefore, the adversary always wins
with probability one, even though P0 was unknown.

In Canonical Form, like ABC, there are actually two state variables, the pre-
vious ciphertext and plaintext. But one can think of these as two binary strings
concatenated into a larger string, since they are always of a fixed and known
size. Thus we write the state si = s′i||s′′i , where s′i is the previous ciphertext and
s′′i the previous plaintext.

Initsk(k) : s1 = R← {0, 1}k ; C0 = s1
Pre(Pi, si) = Pi ⊕ s′i; Post(Pi, si, yi) = yi ⊕ s′′i ;
Update(Pi, si, y) = y ⊕ s′′i ||Pi

5.4 Some Forms of Accumulated Block Ciphers, or ABC

Accumulated Block Ciphers are a class of modes of encryption, first proposed
by Knudsen [Knu00], based on a function denoted h.

In the usual notation:

P ′
i ← Pi ⊕ h(P ′

i−1)
Ci ← Fsk(P ′

i ⊕ Ci−1) ⊕ P ′
i−1

Either h is publicly computable or not. If not, then for reasons of efficiency,
it is most likely a keyed function with a secret key, distinct from or equal to the
secret key of the block cipher. Otherwise an entire secret function would have to
be arranged for, along with the secret key of the block cipher, which would be
cumbersome.

The values P0 = P ′
0 and C0 act as initialization vectors for the scheme. In

particular, if P0 or some key for h are secret, then one writes S-ABC. If instead
P0 is public, and h is publicly computable, then one writes P-ABC. The value
of C0 is always public.
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Canonical Form of ABC. This Canonical Form is correct independent of
the secrecy status of P0 and h. Here, there are actually two state variables, the
previous ciphertext and (primed) plaintext. But, we can think of these as two
binary strings concatenated into a larger string, since they are always of a fixed
and known size. Thus we write the state si = s′i||s′′i , where s′i is the previous
ciphertext and s′′i the previous (primed) plaintext.

Initsk(k) : r
R← {0, 1}k ; C0 = r; s1 = C0||P0

Pre(Pi, si) = Pi ⊕ s′i ⊕ h(s′′i ); Post(Pi, si, yi) = yi ⊕ s′′i ;
Update(Pi, si, y) = y ⊕ s′′i ||Pi ⊕ h(s′′i )

P-ABC. Here, h is publicly computable, and both C0 and P0 are known to the
adversary.

1. Submit (start, start) and receive C0.
2. Submit (P1, P1), and receive C1.

(Comment) At this point, P ′
1 = P1 ⊕ h(P ′

0) = P1 ⊕ h(P0).
(Comment) That further implies C1 = Fsk(P ′

1 ⊕ C0) ⊕ P ′
0 or C1 = Fsk(P1 ⊕

h(P0) ⊕ C0) ⊕ P0.
3. Calculate P2 = P1 ⊕ C0 ⊕ h(P0) ⊕ h(P1 ⊕ h(P0)) ⊕ C1.
4. Submit (P2, Q), with Q �= P2, and receive C2.
5. If C2 ⊕ C1 = P1 ⊕ h(P0) ⊕ P0 then guess b = 0, else guess b = 1.

Suppose the secret bit is b = 0. Then,

P ′
2 = P2 ⊕ h(P ′

1)
= P2 ⊕ h(P1 ⊕ h(P0))
= (P1 ⊕ C0 ⊕ h(P0) ⊕ h(P1 ⊕ h(P0)) ⊕ C1) ⊕ h(P1 ⊕ h(P0))
= P1 ⊕ C0 ⊕ h(P0) ⊕ C1

C2 = Fsk(P ′
2 ⊕ C1) ⊕ P ′

1

= Fsk(P1 ⊕ C0 ⊕ h(P0) ⊕ C1 ⊕ C1) ⊕ P ′
1

= Fsk(P1 ⊕ C0 ⊕ h(P0)) ⊕ P ′
1

C2 ⊕ C1 = P ′
1 ⊕ P0

= P1 ⊕ h(P0) ⊕ P0

Thus upon receipt of C2, the adversary should merely compute C2 ⊕ C1 and
compare it to P1 ⊕ h(P0) ⊕ P0. If they are equal, he/she knows the bit b = 0.
They will be unequal in the case b = 1 for the reasons given in the discussion of
IGE. Note, here we are making explicit use of the fact that the adversary knows
P0 and that h is publicly computable.

Public h but secret P0. In the case of h being the function that always returns
zero, we have IGE. We saw in Section 5.3 that the scheme was breakable even
if P0 was not known. Thus, the secrecy of P0 is insufficient alone to guarantee
security. It is also known that if h is a linear function, i.e. h(x⊕y) = h(x)⊕h(y),
that attacks exist even if h is not publicly computable (see [BBKN01]).
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Here, in the full version of the paper, would appear a discussion of those modes
of encryption which pass the standard for being blockwise-adaptive chosen-
plaintext secure, as well as XCBC. This can be downloaded from e-print [Bar06b].

A Equivalence of Primitive and General Games

Theorem 5.An encryption scheme is general blockwise-adaptive chosen-plaintext
secure, if and only if it is secure in the primitive blockwise-adaptive chosen-plaintext
game.

Proof. Note, in this proof, we use the term “general BACPA game” to be
the BACPA game without the restriction given in Definition 6, and “primitive
BACPA game” to be the game with that restriction.

Since the primitive blockwise-adaptive game is merely a special case of the
general game, an adversary who can win the primitive game can win the general
game, and so (by contrapositive) general security implies primitive security as
well.

To show that primitive security implies general security, we will demonstrate
that if there exists an adversary who can win the general blockwise-adaptive
chosen-plaintext game, then there exists an adversary who can win the primitive
blockwise-adaptive chosen-plaintext game (both in polynomial time with non-
negligible advantage).

Suppose there exists a cryptosystem secure against the primitive blockwise-
adaptive game, which means there is no adversary which can achieve non-
negligible advantage in polynomial time. Suppose further, there is an adversary
Gen who can achieve non-negligible advantage in the general blockwise-adaptive
game, again in polynomial time. We will demonstrate that this leads to a con-
tradiction.

Let N be the random variable that is the number of queries that Gen will
make. Let n be such that Pr[N ≤ n] ≥ 1/2. To see that such an n exists, see the
footnote in the proof of Theorem 2. It is a requirement of the primitive and gen-
eral blockwise-adaptive games that the secret bit b remain constant throughout
the entire game. However, we will violate this rule, and create a series of games
G1, G2, . . . , Gn+1. The ith oracle query in Game Gj will work as follows:

LRBW(b,sk)(P, Q) =

⎧
⎨

⎩

i < j LRBW(b,sk)(P, P )
j ≤ i ≤ n LRBW(b,sk)(Q, Q)

i > n abort

Thus the game Gj will pretend as if the secret bit were 0 until and not includ-
ing the jth query. All queries after and including the jth, until and including
the nth, will be as if the secret bit were 1. Note that during the game G1, it is as

http://www.utube.com


Blockwise-Adaptive Chosen-Plaintext Attack and Online Modes 151

if the secret bit were always 1, and during the game Gn+1, it is as if the secret
bit were always 0.

One cannot expect the output of adversary Gen to have any of its original
properties since the behavior of the oracle has been changed. But nonetheless,
its output is a random variable on the domain {0, 1}. Suppose that the outputs
(as random variables) during games Gx and Gx+1 are computationally distin-
guishable, for some x in the range 1, 2, . . . n.

This means there is an Algorithm Diff which can, with probability 1/2 + δ,
correctly guess which game has been played, and that δ is non-negligible. Now
Algorithm Prim will play the primitive blockwise-adaptive game as follows.
First, it will execute Algorithm Gen, and receive its queries in the form (P, Q).
It will submit a query to its own oracle for each of these. For queries 1, 2, . . . , x−1,
it will be (P, P ). For query x it will be honest, or (P, Q), and for queries x, x +
1, . . . , n it will be (Q, Q). Finally if an n + 1th query is given, it will give up and
guess a bit equal to the value of a fair coin. It is easy to see that Prim only
makes at most one split query, and so does not violate the rules of the primitive
game. If the algorithm does not abort, Algorithm Gen will report a guess, and
this will be passed to the distinguisher Algorithm Diff.

Observe that if the secret bit of the primitive game is actually one, then Gx

has been played. And if the secret bit of the primitive game is actually zero,
then Gx+1 has been played. Since Algorithm Diff can distinguish between these
correctly with probability 1/2 + δ, then Algorithm Prim should guess 0 if Diff
returns Gx+1 and 1 if Diff returns Gx. Obviously Prim will be correct if Diff is
correct and there is no abortion, or correct half the time if there is an abortion.

Since the probability of an abortion is at most 1/2, then the advantage of
Prim is at least δ/2. This is non-negligible, and so Prim can win the primitive
blockwise-adaptive game, which is a contradiction. Therefore Gx and Gx+1 are
computationally indistinguishable, for all x in the range 1, 2, . . . , n.

Note further that computational indistinguishability is transitive so long as
the sequence of objects compared is polynomial in length. Since Gen runs in poly-
nomial time, there are polynomially many queries, and so n is upper-bounded
by a polynomial. Therefore we can conclude, by transitivity, that G1 is compu-
tationally indistinguishable from Gn+1.

But note, that G1 is the general blockwise-adaptive game with the secret bit
set to 1, and Gn+1 is the same with the secret bit set to zero. Since Gen wins
the general blockwise-adaptive game with non-negligible advantage, it does in
fact distinguish between G1 and Gn+1 in polynomial time and with probability
non-negligibly different from one-half. This is the required contradiction.

Therefore no such algorithm Gen can exist, and any system secure against
the primitive blockwise-adaptive game is secure against the general blockwise-
adaptive game as well.
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Abstract. In spite of growing importance of the Advanced Encryption
Standard (AES), the Data Encryption Standard (DES) is by no means
obsolete. DES has never been broken from the practical point of view.
The variant “triple DES” is believed very secure, is widely used, espe-
cially in the financial sector, and should remain so for many many years
to come. In addition, some doubts have been risen whether its replace-
ment AES is secure, given the extreme level of “algebraic vulnerability”
of the AES S-boxes (their low I/O degree and exceptionally large number
of quadratic I/O equations).

Is DES secure from the point of view of algebraic cryptanalysis? We do
not really hope to break it, but just to advance the field of cryptanalysis.
At a first glance, DES seems to be a very poor target — as there is
(apparently) no strong algebraic structure of any kind in DES. However
in [15] it was shown that “small” S-boxes always have a low I/O degree
(cubic for DES as we show below). In addition, due to their low gate
count requirements, by introducing additional variables, we can always
get an extremely sparse system of quadratic equations.

To assess the algebraic vulnerabilities of DES is the easy part, that
may appear unproductive. In this paper we demonstrate that in this way,
several interesting attacks on a real-life “industrial” block cipher can be
found. One of our attacks is the fastest known algebraic attack on 6
rounds of DES. It requires only one single known plaintext (instead
of a very large quantity) which is quite interesting in itself.

Our attacks will recover the key using an ordinary PC, for only six
rounds. Furthermore, in a much weaker sense, we can also attack 12
rounds of DES. These results are very interesting because DES is known
to be a very robust cipher, and our methods are very generic. We discuss
how they can be applied to DES with modified S-boxes, and potentially
other reduced-round block ciphers.

Keywords: block ciphers, algebraic cryptanalysis, DES, s5DES, AES,
solving overdefined and sparse systems of multivariate equations, Elim-
Lin algorithm, Gröbner bases, logical cryptanalysis, SAT solvers.

1 Introduction

According to Claude Shannon, breaking a good cipher should require “as much
work as solving a system of simultaneous equations in a large number of
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unknowns of a complex type” (see [43]). For example, the problem of key re-
covery in AES given one known plaintext can be written as solving a system
of 4000 multivariate quadratic equations, see [14,15]. In general, this problem
(called the MQ problem) is NP-hard, and solving this particular system remains
a very ambitious goal. Nevertheless, there is a growing body of positive results:
systems of equations that arise in the cryptanalysis of block, stream and public-
key encryption schemes, turn out to be — for some specific reason — efficiently
solvable, see [38,13,12,24,27,17,21,19,20], to quote only some major results. Yet
the potential of efficiently solving certain multivariate systems of equations with
special properties is still underestimated in scientific community. For example,
in 2002, Courtois and Pieprzyk, have conjectured that sparse systems of equa-
tions are in general much easier to solve than dense systems of the same size.
In 2006, Courtois Bard and Jefferson have discovered that SAT solvers, but
also known Gröbner bases algorithms such as F4, can in fact solve efficiently
very sparse systems of multivariate quadratic equations (dense MQ is a known
NP-hard problem) [1,2]. To the best of our knowledge no researcher have so
far demonstrated such working cryptanalytic attacks on systems of multivariate
equations of comparable size. In this paper use very similar methods, but instead
of randomly generated sparse systems, we use systems of equations derived from
a real-life block cipher. With our methods, several interesting systems can be
solved in practice, despite their very large size.

The rest of the paper is organized as follows: In the next section we study
several methods of writing equations for DES. In Section 3 we summarise our at-
tacks, explain in detail important previous and related work, and give a complete
description of a couple of (best to date) attacks we did perform. In Section 4 we
compare algebraic cryptanalysis of DES to AES, and algebraic cryptanalysis to
differential and linear cryptanalysis. In Section 5 we show one example showing
attacks one of our attacks becomes easier, and can solve a system of equations
derived from as many as 12 full rounds of DES, when it has a large number of
solutions. We conclude in Section 6.

2 Algebraic Vulnerabilities of DES S-Boxes

Unlike AES, there is no special algebraic structure in DES S-boxes that makes
them particularly vulnerable. In most of this work, we treat them exactly as
any other S-box of the same size. These attacks should therefore also work on
DES with any modified set of S-boxes. For example, in Section 3.3 we give
an example of algebraic attack on s5DES, a clone of DES [29]. Though s5DES
has been designed to be more resistant than DES against all previously known
attacks [29]), it appears to be visibly weaker against one of our attacks.

The S-boxes in DES have n = 6 inputs and m = 4 outputs. There are many
ways in which one can write I/O equations for these S-boxes. The speed and
the success of the algebraic attack will greatly depend on how this is done. In
our work we consider the following three classes of equations that, heuristically,
seem to be relevant to algebraic cryptanalysis:
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• Class 1. Low-degree multivariate I/O relations (cf. definition below),
• Class 2. I/O equations with a small number monomials (can be of high or

of low degree),
• Class 3. Equations of very low degree (between 1 and 2), low non-linearity

and extreme sparsity that one can obtain by adding additional variables.

We have tried several types of equations falling in one of the above cate-
gories, as well as a number of their combinations (merging equations from sev-
eral classes). We have computed and tested all the equations we consider in
this paper, (and some others), and most of them can be found and downloaded
from [8].

Very little is known about what approach would make an algebraic attack
efficient and why. In our simulations, though Class number 3 seems to be the
best choice, all the three do in fact give solvable systems of equations for several
rounds of DES. This in spite of the fact that some resulting systems of equations
are substantially larger in size. We anticipate that better methods for writing
DES as a system of equations should be proposed in the future. We consider that
the question which representation of a symmetric cipher is the most suitable for
algebraic attacks and why, is an important research topic in itself.

2.1 Low-Degree Multivariate I/O Relations

The following notion plays an essential role in algebraic attacks on LFSR-based
stream ciphers, see [17,9] as well as for (at least) certain insecure block ciphers
[28,21].

Definition 1 (The I/O degree, [9,3]). Consider a function f : GF (2)n →
GF (2)m, f(x) = y, with x = (x0, . . . , xn−1) , y = (y0, . . . , ym−1).
The I/O degree of f is the smallest degree of the algebraic relation

g(x0, . . . , xn−1; y0, . . . , ym−1) = 0

that holds with certainty, i.e. for every pair (x, y) such that y = f(x).

The minimum number (and frequently the exact number) of equations of some
type that do exist for one S-box can be obtained by applying the following
theorem:

Theorem 1 (Courtois [15,17,20]). For any n × m S-box, F : (x1, . . . , xn) �→
(y1, . . . , ym), and for any subset T of t out of 2m+n possible monomials in the
xi and yj, if t > 2n, there are at least t − 2n linearly independent I/O equa-
tions (algebraic relations) involving (only) monomials in T , and that hold with
probability 1, i.e. for every (x, y) such that y = F (x).

Proof (sketch). All the monomials can be rewritten as a function of n variables
and their Algebraic Normal Form (ANF) belong to a GF (2)-linear space of
dimension 2n. If the number of monomials in T is bigger than this dimension,
there will be at least t−2n linear dependencies among these ANF in n variables,
and the same linear dependencies will also hold for the original monomials. ��
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First Example of Application of Theorem 1 to DES

For example, we can consider the equations of the following type:
∑

αijkxiyjyk +
∑

βijkxixjyk +
∑

γijxiyj +
∑

δixi +
∑

εiyi + η = 0

These equations are of degree 3. The total number of monomials that arise in
these equations is t = n · m(m − 1)/2 + m · n(n − 1)/2 + nm + n + m + 1 = 131.
By straightforward application of Theorem 1 we get:

Corollary 1. For any F (x1, . . . , x6) = y1, . . . , y4 (i.e. a 6×4 S-box), the number
of linearly independent equations of this type (belonging to Class 1) is at least:

r ≥ t − 2n = 67.

Thus, for any 6 × 4 S-box (not only a DES S-box) there are at least r ≥
t − 2n = 67 such equations. In practice, for DES S-boxes, we get sometimes 67,
sometimes 68:

Table 1. The Actual Number of Equations Observed for Different S-boxes

DES S-box 1 2 3 4 5 6 7 8

r = 67 67 67 67 68 68 67 67

Fully Cubic Equations
We also consider fully cubic equations in the 10 variables xi and yi. We have

t = 1+(n+m)+(n+m)(n+m−1)/2+(n+m)(n+m−1)(n+m−2)/6 = 176,

and thus r ≥ t − 2n = 112. Computer simulations give exactly 112 for all the 8
S-boxes of DES. The same numbers are obtained for s5DES [29].

Remark: Three fully functional examples of equations for 6, 8 and 16-round
DES based on these (cubic) polynomials can be downloaded from [8].

I/O Equations of Degree 4
We have t = 386, r ≥ t− 2n = 322. We obtain exactly this many for each S-box.

Dense Class 1 Equations, Discussion

The equations we considered so far, are dense (as opposed to sparse) equations
in Class 1 of degree 2-4. Apparently the S-boxes of DES behave more or less as
random S-boxes of the same size. With the first type equations it seems that
we can still “distinguish” them from random. For fully cubic and higher degree
equations, no difference was observed, and we expect that there is no differen also
for other types of I/O low degree equations where t is approximately above 131.

This is an important remark because it means that we do not expect that
algebraic attacks that use dense Class 1 equations, will be much less or much
more efficient on DES itself compared to versions with modified or random S-
boxes. However, for specific S-boxes, the equations may be very special, for
example more sparse.
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Sparse Cubic Equations

We can observe that not all cubic equations we found are dense. In this section we
give the number of very sparse cubic equations that we found for different DES S-
boxes. These equations have up to 8 monomials. We expect that even more sparse
cubic equations can be found. It is possible that replacing our 112 equations by
a smaller but particularly sparse subsystem of equations (if it uniquely defines
the S-box) gives better results in some attacks. Currently we do not know of a
convincing example.

Table 2. The Number of Sparse Cubic Equations Found for Different S-boxes

DES S-box 1 2 3 4 5 6 7 8

HW ≤ 6, r = 2 4 6 1 15 1 0 2

HW ≤ 8, r = 3 8 11 13 17 8 1 7

2.2 Quadratic Equations

Though no theorem guarantees their existence, for certain S-boxes, there also
exist quadratic I/O equations. Their number is not very large and they cannot
alone be used to mount an algebraic attack. In comparison, for s5DES [29], there
are more quadratic equations, but the number remains quite small and they these
equations taken alone do not uniquely define the S-boxes.

Table 3. Quadratic Equations Observed for Different S-boxes

S-box 1 2 3 4 5 6 7 8

DES 1 0 0 5 1 0 0 0
s5DES 3 3 3 4 3 3 3 3

Remark. For all above mentioned types of low-degree equations, it is possible to
delete some equations, for example taking every second equation. This leads to
systems that are smaller and less over-determined. This is expected to give worse
results in Gröbner basis attacks. However in some SAT attacks, such smaller
systems seems to give slightly faster attacks, but we cannot say for certain.

2.3 Relations with a Very Small Number Monomials

These equations were first proposed and studied in [18]. First, we study equations
that can be of arbitrary degree but that contain only one monomial. These are
called monomial equations in [18]. For example x1x2x5y3y4 = 0. One should
note that we count 1 as a monomial and the equation x1x2x5y3y4 = 1 would be
counted as a binomial equation. We have studied and computed equations with
1, 2, 3 and 4 monomials (cf. Table 4). Before we present the results, several things
should be noted. Since linear combinations may ruin the sparsity of equations
(maintaining sparsity is our focus), all these equations do not have to be linearly
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independent. Still, from our count of binomial equations we exclude those that
are trivial because they are linear combinations of simpler, monomial equations.
Similarly, from our count of trinomial equations we exclude equations that would
be a XOR of one monomial and one binomial equation, etc.. The number of
equations with 4 monomials is getting already quite large. However it is possible
to select among these equations, a smaller subset of equations and preferably
of lower degree (their degree is 10 at maximum). We have decided to limit the
sum of the degrees of the 4 monomials to 15 which also forces the overall degree
to be ≤ 4 and to have at least one monomial of degree 3. For example, for
DES S-box S1, we have the following equation 0 = x[1]x[5]x[32] + x[1]x[2]x[5] +
x[1]x[3]x[4]x[5]+x[1]x[5]y[31], Here, the bits are numbered not according to their
position in the S-box, but from 1 to 32, according to their position in the whole
round function of DES. The sum of degrees in this equation is 3+3+4+3 = 13.

In Table 4 we give the number of equations of each type found for DES, and
compare it with results obtained for several randomly generated S-boxes of the
same size.

Remark 1. We observe that for a random S-box, the number of equations
of different types is rather strongly variable, On the contrary, all the DES S-
boxes give quite similar results and clearly these equations are a good method
to distinguish the DES S-boxes from a random function. We note also that
monomial equations have a curious property that, for a random S-box, it is not
totally unusual to have 0 such equations.

Table 4. Equations that Contain a Small Number of Monomials in DES

1 monomial
2 monomials
3 monomials
4 monomials

4 m;
∑

deg ≤ 15

random
S-box

0 − 463
233 − 524
1 − 112

1880 − 6106
250 − 1053

DES S-box

1 2 3 4 5 6 7 8

170 140 179 145 207 154 153 173
360 385 322 362 303 345 379 329
123 125 56 66 74 115 81 99
716 608 771 567 484 543 750 448
87 73 104 57 86 104 94 75

Remark 2. When equations of this type are used alone to describe DES (es-
pecially with a single plaintext/ciphertext pair), and the key is computed by
an algebraic attack, they typically will not uniquely define the solution to the
system. This is because typically, when all yi = 0 and regardless the value of
x, these equations will all be satisfied (!). Though in some cases (by accident)
we still were able to recover the right key in our attacks, we advocate the us-
age of these equations in conjunction with some other equations that permit
the removal of spurious solutions to systems of equations. We observed that in
some cases, mixing these equations with our (more traditional and dense) Class
1 I/O equations of degree 3, gave faster attacks than with our cubic equations
alone, but the improvement was contained within the natural variability margin,
therefore the interest of this method remains unclear.
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2.4 Equations with Additional Variables

Equations Related to Efficient Hardware Implementation. By adding
up to 52 additional variables per S-box and per round, it is possible to dra-
matically reduce the size of equations, increase their sparsity and decrease their
non-linearity. All equations will have either 0 or 1 nonlinear monomial. There
are many different methods to achieve this, and ours is directly derived from
the low-gate count non-standard representation of DES that has been developed
by Matthew Kwan, see [30]. These are our ”favorite equations” so far, and one
example of system of equations that contains all these (exact) equations we use
can be downloaded from [8]). In practice, we have observed a speedup factor
between 2 and 20 compared to the same attack done with the sets with 112
cubic equations per S-box.

Quadratic Representations with a Minimum Number of Added Vari-
ables. In the previous version, we add as many as up to 52 additional variables.
One can do much better and it is possible to see that, due to the size of the DES
S-boxes, by adding just one variable the degree of the equations collapses from
3 to 2. More generally we have:

Theorem 2. For every S-box with 6 input bits and 4 output bits, if we add any
additional variable that is defined by an arbitrary Boolean function of 6 input
bits, the number of linearly independent quadratic equations of degree 2 with
these 4 + 6 + 1 = 11 variables is at least 3.

Proof (sketch). Following the same argument as in Theorem 1, with 10+1
variables,

(11
2

)
+ 11 + 1 = 67 quadratic or lower degree monomials, while the

number of cases is 64. Therefore there are at least 3 quadratic equations.
We do not know a satisfactory choice for the additional variable to be added.

More research about quadratic representation of DES S-boxes is needed.

3 Our Attacks on DES

3.1 Summary

From our equations on the S-boxes, it is easy to write a system of multivariate
equations that describe the whole cipher. This system will be of degree 2, 3,
4 or more, depending on which equations we use for the S-boxes. This system
should have a unique solution (if it is not the case one should either fix some
variables or use some extra equations). Examples of such systems of equations
can be downloaded from [8].

Interestingly, though almost all researchers in cryptography we know, as well
as some computer algebraists, believe that there is no method whatsoever ca-
pable of solving (in practice) such systems of equations, we have discovered two
totally different families of methods (that are of very different nature) that both
work quite well.
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1. The first is a particularly simple elimination algorithm called ElimLin, which
can be see as a very simplified version of known Gröbner bases algorithms.
It is fully described in Section 3.3.

2. The second is a simple and straightforward ANF to CNF conversion method
following [1,2]. For each monomial in the equations we add a dummy variable,
and CNF equations that relate it logically to variables and sub-monomials.
To encode long XORs we use additional dummy variables and obtain shorter
XORs. When the conversion is done, we obtain a large SAT problem, on
which we run MiniSat 2.0, a very efficient and one of the latest SAT solvers,
that is freely available on the internet with source code [35].

These methods can also be combined as follows: first we derive additional
equations (not always sparse) by ElimLin (or by using other methods such as F5
[24]), then we add these new equations with the initial (very sparse) equations,
then we run the ANF to CNF conversion and then MiniSat.

3.2 Related Work and What’s New

In the past, many researchers quite naturally wondered if DES could be broken
by solving a system of Boolean equations, see for example [44,26] and Section
4.3.2. of [23]. The idea was known as a method of “formal” coding. Unhappily,
most people worked with a “functional” approach to describing S-boxes and
whole rounds of the cipher. This is a very strong limitation that overlooks a
wide range of attacks, see [9,15,38,28]. Nevertheless, at Crypto’85 Chaum and
Evertse looked at bits (and their linear combinations) inside the DES encryption,
that do not depend on some key bits (or their linear combinations), see [5]. If
a bit can be found that computed in the forward direction from the plaintext,
and computed from the ciphertext in the backwards direction, this bit gives an
equation that does not depend on some key bits. Such equations can be used
to speed-up the exhaustive search and for 6 rounds of DES, an attack 22 times
faster than brute force is reported. This can be seen as the first algebraic attack
on a reduced version of DES (our best attack will be faster).

The modern concept of algebraic cryptanalysis using arbitrary algebraic re-
lations, see [9,15,38,28] is much richer in possibilities and working attacks. Our
results should be compared with previous work on solving very large systems of
multivariate equations and to previous successful attacks on general block ciphers
with no special/algebraic properties such as in [5]. None of our solving methods
is completely new. The use of Gröbner bases for solving systems of equations
derived from a cipher has become very popular since [15], yet no convincing
attacks on block ciphers were reported so far. The use of SAT solvers to break
3 rounds of DES have previously been shown to be feasible by Massacci and
Marraro [33]. The authors of [33] call it “logical cryptanalysis” to emphasise the
“automated reasoning” view. We consider this to be a part of “algebraic crypt-
analysis” especially that we do not write SAT systems directly, but first write
multivariate low-degree equations, then work on general-purpose conversion. We
also consider that the methods of abstract algebra include and go beyond classi-
cal logic and reasoning. Unlike as in [33], our method — write equations, convert
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and solve — is very general and applicable to any block or stream cipher. It has
an interesting property that the equations can be combined with any set of “ad-
ditional” equations that are typically derived in Gröbner bases-like and related
algorithms. SAT solvers may then be also used as a tool to complete any alge-
braic attack that does not work (sufficiently well) by itself, and this could be
interesting because SAT solvers make heuristic guesses based on “non-algebraic”
(but rather statistical) criteria.

Admittedly, the attack on 3 rounds of DES described in [33] is a very weak
attack (even knowing that it requires one single plaintext), and the authors
report “an abrupt jump in complexity” at 4 rounds. Maybe for this reason the
result remained almost unnoticed in the cryptographic community. Some time
after a preprint of this paper was written and circulated, Raddum and Semaev
proposed yet another, new and very different approach to algebraic cryptanalysis,
see [39,40]. So far (as of September 2007, see [39]), their attack works only for
up to 4 rounds of DES, and it runs out of memory for 5 rounds. Our attacks on
DES are the first to be be faster than the (older) algebraic attack on 6 round of
DES [5]. Our methods are also clearly of much broader applicability.

The immediate contribution of this paper is to show that some very sparse
systems of multivariate low-degree equations over small finite fields derived from
industrial block ciphers can be solved in a matter of seconds on a PC. This by
both our conversion to SAT, as well as techniques in the line of Gröbner bases
(in fact we only worked with extremely simple monomial elimination tools that
were however highly optimised in terms of memory management, and the order
of operations was rearranged to conserve sparsity). One can wonder to what
extent the systems we are solving here are special (i.e. weak)? It is very hard
to know what exactly makes systems efficiently solvable, but it appears that
sparsity alone will make systems efficiently solvable, both by SAT solvers and
classical Gröbner bases methods, see [1,2]. One may notice that in the past, a
reduction from the MQ problem to SAT, has been used to show that MQ was
NP-hard. And now, we see that the very same reduction method can be used to
solve very large instances of MQ that were believed intractable to handle.

3.3 Examples of Working Attacks on DES — Elimination Attacks

We start with a very simple yet remarkable algebraic attack that we call Elim-
Lin. The ElimLin function works as follows: we take the initial system (that is
of degree 2 or 3) and look if there are linear equations in the linear span of
the equations. If so we can eliminate several variables, by simple substitution
(by a linear expression). Then, quite surprisingly, new linear equations can be
obtained, and this can go on for many, many iterations. This process is repeated
until no more linear equations can be found. The order of variables is such that
the variables that appear in the smallest number of equations are eliminated
first, which helps to preserve sparsity. In addition, key variables are eliminated
only when no other variable can be eliminated.

ElimLin alone gives very good results, given its extreme simplicity. We write
a system of 112 fully cubic equations per S-box following Section 2.1, for 4
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full rounds of DES, and for one known plaintext. We fix first 19 key bits to
their actual values. And 37 remain to be determined. The time to compute 236

times 4 rounds of DES on our 1.6 GHz Centrino CPU can be estimated to be
about 8000 seconds. Instead, ElimLin takes only 8 seconds to find the correct
solution. Attacks on 5 rounds can still be (marginally) faster than brute force.
For example, with 3 known plaintexts and 23 variables fixed, we compute the
key in 173 seconds, compared to about 540 s that would be needed by a brute
force attack.

With eliminate ElimLin we did not go very far, but still we do two more rounds
than in [32]. We observed that strictly better results (in terms of feasibility)
can be obtained with XL algorithm and the so called T’ method [14,15,22], or
algorithms such as F4 or F5, however we do not report any results with these,
as they do not really go much further, and we feel that our implementation of
these still needs improvement, and the T’ method is not optimal (in particular
it computes the same equations many times). We have also tried ready packages
such as MAGMA [31] and Singular [41], and found that these systematically run
out of memory on our examples due to (apparently) lack of adequate support for
sparse elimination on large systems. In fact, this occurred even on some simple
examples we could solve completely with ElimLin in less than 1 hour.

Comparison to s5DES. The same attacks work on s5DES and the attack on
5 rounds with 3 chosen plaintexts is about 8 times faster. This might be due to
the fact that for s5DES, a large subset of equations we use here are in fact of
degree 2, see Section 2.2.

3.4 Examples of Working Attacks — Attacks with Conversion to
SAT

With a very simple early version of our ANF to CNF converter, we write a
system of quadratic equations with additional variables as described in section
2.4. We do it for full 6 rounds of DES, fix 20 key variables (it does not really
matter which) and do the conversion that takes few seconds. Then with the
latest version of MiniSat 2.0. with pre-conditioning we compute the key in 68
seconds while the exhaustive search would take about 4000 s. The complexity to
recover full 56-bit key by this attack is about 248 applications of reduced DES
(feasible in practice).

Remark: We have tried if either MAGMA [31] or Singular [41] could solve this
system of equations that we solve in 68 s. Both crash with out of memory message
after allocating nearly 2 Gbytes. The memory usage reported by MiniSat is 9
Mbytes.

Comparison to s5DES. Unhappily, we cannot apply this attack to s5DES,
because it is based on a special low gate count representation developed for DES
[30], and no such representation of s5DES is known. It would be interesting to
know if s5DES that has been specifically designed to be more resistant than DES
against all previously known attacks [29]), is weaker than DES against algebraic
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attacks as our results in Section 3.3 seem to indicate, however it is certainly too
early to draw such a conclusion and more research on this topic is needed.

4 Algebraic Cryptanalysis: The Great Challenge

4.1 Are Large Systems of Very Sparse Low-Degree Equations
Solvable?

In our (best) system of equations in section 3.4 above, we have 2900 variables,
3056 equations and 4331 monomials. 1 The system is very sparse and compact,
it has on average less than 1 non-linear monomial per equation. It is solved in
68 seconds.

We believe to be the first to show that such large systems of equations gener-
ated from a real-life cipher structure can be efficiently solvable. Obviously, not
every system with similar parameters is efficiently solvable, and clearly the secu-
rity of DES (as probably for any other cipher) against our attacks does quickly
increase with the number of rounds.

Comparison to AES. Nevertheless, the following question can be asked, can
we hope to break, say 6 rounds of AES by using SAT solvers? In comparison to
ours, the binary system of equations proposed by Courtois and Pieprzyk in [15]
has 4000 equations and 1600 variables: it is in fact overdefined and may seem
easier to solve. Very unhappily, this system has substantially more monomials,
about 137 · 200 = 27400, much more than a few thousands.2

4.2 Algebraic vs. Linear and Differential Cryptanalysis

Our vision of cryptanalysis changes each time a new cipher is considered, and
each time we discover a new powerful attack. In the past DES has been thor-
oughly cryptanalysed by linear and differential cryptanalyses for up to 16 rounds.
In this context our results may appear quite insignificant. On the contrary, we
believe that, our results are interesting and this for several reasons.

First, we can recover the key given one single known plaintext. A tiny amount
of data needed by the attacker is maybe the most striking feature of algebraic
cryptanalysis. This is a rare and strong property of algebraic attacks, very few
attacks that nave this property were ever proposed. It is precisely the reason why
algebraic attacks are potentially very devastating, and this however immature
and inefficient they are today. For example, from one single MAC computed by
1 Some equations are linear and if we eliminated them, we would have 1298 variables,

1326 equations and 10369 monomials. It would become less sparse (15 monomials
per equation on average) but still very sparse. We don’t do this, it makes the attack
run slower.

2 Another system of equations that describes the whole AES have been proposed
by Murphy and Robshaw [37], and it contains on average less than one non-linear
monomial per equation. This is very similar to ours, however their system is over
GF (256), not over GF (2).
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an EMV bank card with a chip that is printed on a customer receipt, one would
recover the key of the card, and from this single key, the master key of the issuing
bank that could be used to make false bank cards. Luckily, there is no reason to
believe that this could happen in a foreseeable future.

Nevertheless, we contend that it is inappropriate to compare algebraic crypt-
analysis with linear and differential cryptanalysis and claim it is slower. In a
certain way, linear and differential cryptanalysis became the reference as a by-
product of our incapacity to ever find any attack on DES, that would be better
than exhaustive search in a realistic setting. Algebraic cryptanalysis, while still
not very powerful and unable to break full DES, does slowly emerge as more or
less the only branch of cryptanalysis that may work in real life (i.e. when very
few known plaintexts are available, not 240 plaintexts). We suggest that attacks
that require only a very small number of known plaintexts should be consid-
ered as a research topic of its own right. They should mainly be compared only
to other attacks of this type. Moreover, if we can agree that for DES algebraic
cryptanalysis is currently no match compared to classical attacks, we may as well
argue that actually none of these attacks are of practical importance. Both types
of attacks (algebraic vs. classical ones) represent the current state of research in
cryptology, and yet it is the algebraic cryptanalysis that is new and can still be
improved a lot. (It will already improve just by using better SAT solvers and
more powerful computers. For some systems we have observed a speed-up of a
factor 8 between MiniSat version 1.4 and 2.0.)

One should also note that, the situation that we have for DES could be very
different for AES. Since AES is, by design, very strong against differential and
linear cryptanalysis, the number of rounds is accordingly quite small in AES, and
the threat is indeed that some form of algebraic cryptanalysis could give better
results for this cipher (comparatively to linear and differential attacks). However,
since the initial attack proposal [14,15], it seems that no visible progress is being
made in this direction. Our feeling that, before attacking AES, we need to learn
much more about algebraic cryptanalysis, and try it on many other ciphers. This
was the main motivation of the present paper.

5 Algebraic Cryptanalysis as a Tool for Studying Ciphers

In this paper we demonstrated that algebraic (and logical) cryptanalysis is a
tool for key recovery capable of finding the best known attack on 6 rounds of
DES given 1 known plaintext. There are other interesting applications. One
should be able to use it to solve many other problems that arise in cipher design
such as detecting weaknesses, special properties, weak keys, finding collisions,
second pre-images, long-range impossible differentials etc.. In the past, these
tasks were done manually by a cryptanalyst. In the very near future, these
should be automated.

We provide one simple example.
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5.1 A Special-Property Finder on Full 12 Rounds of DES

Let ‘0123456789ABCDEF’ be a fixed DES key (one that we did not choose to
be weak or have some special property). We want to find an “educational” ex-
ample of differential cryptanalysis for the first 12 rounds of DES with difference
(‘00196000’,‘00000000’), that comes from the best existing differential char-
acteristic for DES, see [16]. It is known that this difference is reproduced after
two rounds with probability exactly 2−8, regardless the value of the key. The
naive method to find a sample plaintext for which this difference holds through-
out the whole computation is exhaustive search. For 10 consecutive rounds it
requires about 241 reduced DES computations and we estimate that it would
take about 4 days on our laptop. For 12 consecutive rounds it requires about 249

reduced DES computations which would last for about 3 years.
An algebraic approach to this problem is obvious: we can write this problem

as a system of equations that has many solutions (we expect approximately 224

and 216, respectively). We have tried this approach. By using our (last) quadratic
and very sparse representation of the S-box, and by converting it to SAT, we
have managed to find a desired solution. For 10 rounds this is particularly easy,
we do it in 50 seconds while in addition fixing 6 additional variables to values
chosen by us (many different solutions can thus be obtained). For 12 rounds it
is harder to do, and the solution was found in 6 hours (instead of 3 years). For
example, one can verify that the plaintext ‘4385AF6C49362B58’ is a solution to
this problem for 12 rounds and the key ‘0123456789ABCDEF’.

Thus we are able to find a special property of 12 rounds of DES within a
time much much smaller than the inverse of the probability of this property.
This is a nice and unexpected result with unclear ramifications. The system of
equations is very similar that in key recovery attacks, yet due to the multiplicity
of solutions, it is much easier to solve and we could do it on a laptop PC for as
many as 12 rounds. It is not a key recovery attack, but could be treated as a
weak “certificational” algebraic attack on 12 rounds of DES.

5.2 Discussion

This attack is open to interpretation and discussion. How do we perceive and
interpret a cryptographic attack greatly depends on how it compares with other
attacks. This perception may change when we discover new attacks (for example,
it would change if somebody have found another attack that would achieve a
similar speed-up). Here is our current interpretation of this result. We encourage
other researchers to challenge this interpretation.

DES with 12-rounds can be treated and used as a pseudo-random permuta-
tion generator. We have found a new weakness of this generator and this w.r.t.
attackers disposing of a very low computing power (e.g. only 50 seconds on a
PC for 10 rounds).

Thus far it was known that DES had a particular property w.r.t. differential
cryptanalysis that happens with a small probability and that can be detected
when treating it as a “black box”. In a “glass box” scenario, when the key and
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the algorithm is known to the attacker, plaintexts that have these properties can
be detected and generated much faster. DES with 12 rounds cannot be treated
as a “black box” or “random oracle” or “random cipher”. We expect that our
attack works for every possible DES key.

From differential cryptanalysis (a basic and naive application of it, could be
improved) we already knew that DES with 12 rounds cannot be treated as a
“black box” by an adversary that can do 249 queries to the oracle. We also knew
that it cannot be treated as a “black box” when the adversary can carefully
choose the key — this is because DES has some weak keys (and there is also the
complementation property). Here we learn that it cannot be treated as a “black
box” when the key is random, and known to the adversary: the adversary can
do more things than just implement 12 rounds of DES and experiment with it.
The adversary does not have to be very powerful. He doesn’t need to make 249

queries to the oracle, and he needs a rather small computing power that is no
match for computing answers for these 249 queries. To summarize, DES with up
to 12 rounds is not a very good permutation generator even against adversaries
with very limited computing power.

5.3 Future Research

We believe that many other results of this kind can be obtained by our (and sim-
ilar) methods. In particular, it appears that SAT solvers are particularly efficient
in solving problems that have many solutions as demonstrated in recent work on
hash function cryptanalysis with SAT solvers [36]. In general, we expect that it
should be also possible to break certain hash functions and MACs by algebraic
and/or logical attacks similar to ours, or in combination with other methods.
It should be also possible to answer many questions such as, for example: given
a block cipher, is there a choice of a subset of key bits to be fixed such that
there will be a differential true with probability 1 for 4 rounds. In some cases
the attack would just consist of running ready computer packages designed to
efficiently solve SAT instances or/and systems of multivariate equations and may
require very little human intervention.

6 Conclusion

In this paper we show that in many interesting cases, it is possible to solve in
practice very large systems of multivariate equations with more than 1000 un-
knowns derived from a contemporary block cipher such as DES. Several methods
were considered, and our best key-recovery attack allows one to break in practice,
up to 6 complete rounds of DES and given only 1 known plaintext. Very few at-
tacks on realistic ciphers are known that work given such a low quantity of plain-
text material. At the same time, our approach is extremely general. It is clearly
possible to use it to find algebraic attacks of this type in an automated way
starting from the very description of a symmetric cipher, and without the neces-
sity to find any strong property or particular weakness. This opens new avenues
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of research which is rich in possibilities (there are many different representations
of the S-boxes) and in which experimentation is an essential ingredient.

Until now, direct attempts to attack block ciphers with Gröbner bases have
given very poor results. In 2006 Courtois proposed a general strategy for “fast”
algebraic attacks on block ciphers [10]. We need to avoid methods such as
Gröbner bases that expand systems of equations to a larger degree (e.g. 4 or
5) and then solve them. Instead, we need to find methods to produce systems
of equations that, though may be much larger in size, can be nevertheless much
easier to solve and by much simpler techniques, without time and memory-
consuming expansion. Here, linear algebra and known elimination techniques
need to be complemented with heuristics that take advantage of and (to some
degree) preserve sparsity. Then, for attacks such as [10] and in the present paper,
it appears that current Gröbner bases techniques are no match compared much
simpler techniques such as ElimLin.

For DES (and also for KeeLoq, see [11]) it appears that the fastest algebraic
attacks currently known are those obtained with modern SAT solvers. Our spe-
cific approach is to write problems algebraically and work on conversion. This
allows methods from both families to be combined in many ways. By just the few
simple working examples we give in this paper, we have considerably enlarged
the family of algebraic cryptanalytic methods that are available to researchers.

Another interesting contribution of this paper is to point out that while the
performance of algebraic elimination methods is usually greatly degraded when
the system of equations has many solutions, SAT solvers in fact can benefit from
it. This potential remains largely unexplored, and may lead to interesting results
in cryptanalysis of hash functions and MACs. As an illustration we computed a
special property of 12 full rounds of DES.

It should be noted that we ignore why some systems of equations are efficiently
solvable. We just demonstrate that they are. It is certainly an important topic for
further research to understand why these attacks actually work, but it would be
wrong to believe that only attacks that are well understood should be studied
in cryptology. This is because the number of possible algebraic attacks that
can be envisaged is very large: one finite DES S-box can be described by a
system of algebraic equations in an infinite number of ways, and the attacks
that should be studied in priority are the fastest ones, not the ones for which a
nice mathematical theory already exists such as Gröbner bases. Moreover, if one
does not experiment, or if one only studies attacks that are faster than linear
and differential cryptanalysis, then some important attacks on block ciphers will
never be discovered.
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Abstract. To deliver real world cryptographic applications, we are in-
creasingly reliant on security guarantees from both the underlying math-
ematics and physical implementation. The micro-processors that execute
such applications are often designed with a focus on performance, area
or power consumption. This strategy neglects physical security, a fact
that has recently been exploited by a new breed of micro-architectural
side-channel attacks. We introduce a new attack within this class which
targets the use of low power cache memories. Although such caches offer
an attractive compromise between performance and power consumption
within mobile computing devices, we show that they permit attack where
a more considered design strategy would not.

1 Introduction

Side-channel Analysis. Advances in cryptanalysis are often produced by
mathematicians who seek techniques to unravel the hard problems on which
modern cryptosystems are based. Attacks based on the concept of physical se-
curity move the art of cryptanalysis from the mathematical domain into the
practical domain of implementation. By considering the implementation of cryp-
tosystems rather than purely their specification, researchers have found they can
mount physical attacks which are of low cost, in terms of time and equipment,
and are highly successful in extracting useful results.

Side-channel attacks are based on the assumption that one can observe an
algorithm being executed on a micro-processor, for example, and infer details
about the internal state of computation from the features that occur. Ignoring
the field of active fault injection attacks, a typical side-channel attack consists
of a passive collection phase, which provides the attacker with profiles of execu-
tion, and an analysis phase which recovers otherwise secret information from the
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profiles. The execution profile might be collected via mediums such as timing
variation [20], power consumption [21] or electromagnetic emission [8]. Consider-
ing power consumption as the collection medium from here on, attack methods
can be split into two main classes. Simple Power Analysis (SPA) is where the
attacker can only collect one profile and is required to recover secret information
by focusing mainly on the operation being executed. In contrast, Differential
Power Analysis (DPA) uses statistical methods to form a correlation between a
number of profiles and secret information by focusing mainly on the data items
being processed. Approaches to defending against both these attack paradigms
are increasingly well understood on a case-per-case basis, although the poten-
tial for delivery of a panacea via provably side-channel secure implementation
is still unclear. It is obvious however that a trade-off exists between efficiency
and security. That is, the methods that are viewed as most secure in this setting
often introduce the highest performance overhead. Therefore, as in the study of
theoretical cryptography, reasoning about and achieving required security levels
for the lowest computational cost is an ongoing research challenge.

Micro-architectural Side-channels. The design of micro-processors can be
very coarsely split into two separate tasks: the design of an Instruction Set Archi-
tecture (ISA) which defines an interface between a program and the processor,
and the design of a micro-architecture by which a particular processor imple-
mentation realises the ISA. This separation implies that there are many valid
micro-architectural choices for a single ISA; example ISA designs such as MIPS32
exploit this to allow compatible processors with vastly different characteristics
for different markets.

The freedom to make micro-architectural decisions that provide an advantage
in terms of a particular design goal is a powerful tool. However, an advantage for
one goal often implies a disadvantage for another; for example it is hard to improve
performance without an impact on area or power consumption. In the resulting
struggle for compromise, physical security is often relegated to a second-class goal
without direct consideration. As understanding of attack and defence techniques
has evolved, the field of side-channel analysis has recently been extended to in-
clude use of micro-architectural features in the processor under attack to directly
provide execution profiles. For example, one might make the micro-architectural
decision to use cache memory within a processor design. This feature is transpar-
ent to a program running on the processor but can produce data dependent timing
delays which are both observable and usable by an attacker.

This is both an interesting and a worrying development which has sparked
a slew of recent research. It impacts directly on systems, such as those pro-
viding trusted computing or Digital Rights Management (DRM), which might
be otherwise strictly analysed and protected against security vulnerabilities via
sand-boxing techniques.

Main Contributions. The increasing ubiquity of mobile computing devices has
presented practical cryptography with a problem. On one hand mobile devices
are required to be as compact and resource conservative as possible; on the other
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hand they are increasingly required to perform complex computational tasks in
a secure way. This challenge has resulted in a number of micro-architectural
proposals to reduce power consumption while maximising performance. Focusing
on low power cache memories, the main contribution of this paper is a micro-
architectural side-channel attack that targets this compromise. In simple terms
the result shows that deploying certain low power cache memories within a micro-
architectural design allows the attack, using a standard cache memory does not.
We posit that in order to nullify this genre of attack, it is vital to accept and
adopt an altered processor design strategy that may result in an impact on
performance but will consider security as a first class requirement.

The paper is organised as follows. In Section 2 we give a thorough overview
of current research on micro-architectural side-channel attack and defence. In
Section 3 we recap on the implementation and physical security of RSA. We
then describe two styles of low power cache memory design in Section 4, each of
which has been feted for use in the same sort of mobile computing devices most
open to side-channel attack. Finally we present our attack methodology, a set
of simulated results and proposals for countermeasures in Section 5, followed by
concluding remarks in Section 6.

2 A Survey of Micro-architectural Side-Channels

2.1 Active and Passive Monitoring

Traditionally, side-channel attacks have been distinguished from fault attacks by
the role of the attacker. In a side-channel attack the attacker passively monitors a
target processor to collect execution profiles that occur normally, in a fault attack
the attacker actively tampers with the target device to disrupt execution. The
passive monitoring of side-channel attacks is usually external to the processor.
That is, no access (beyond perhaps depackaging) is required to the internals
of the device via either software or hardware; for example, monitoring power
consumption can be achieved by tapping the power source outside the package.

Some micro-architectural side-channel attacks have focused on a new moni-
toring paradigm that has proved to be both interesting and powerful. Roughly
speaking a so-called spy process S is executed on the target device concurrently
with the process P that is under attack. A multitasking Operating System (OS)
rapidly switches between S and P allowing S to inspect the micro-architectural
state of the processor after execution of P ; this is primarily because said state
is shared between all running processes. If any changes in the shared state are
correlated to secret information held in P , it is possible that S can recover it.
This attack paradigm might be viewed separately from traditional side-channel
attacks in the sense that it is no longer entirely passive. That is, the attacker
must have some necessarily active means by which to execute S on the target
device. This alone might limit the appeal of the paradigm in that such a system
might already be viewed as insecure at this stage. Furthermore, execution of S
places an artificial computational load on the target device. This load is of a
fairly special form: S typically runs in a tight loop performing few or no system
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or library calls. This is somewhat atypical behaviour on relevant platforms, for
example web-servers, and as a result one might expect to successfully deploy
some form of intrusion detection.

To distinguish the two, we term the method of collecting execution profiles
used by traditional side-channel attacks and those using a concurrent spy process
passive-monitoring and active-monitoring respectively.

2.2 Cache Memory Based Attacks

A cache is a small area of fast storage and associated control logic which is placed
between the processor and main memory; for an in depth description see [26,
Chapter 5]. The area of storage is typically organised as a number of cache lines,
each of which comprise a number of sub-words that are used to store contiguous
addresses from main memory. Since the cache is smaller than main memory, it
stores a sub-set of the memory content. As a result of locality in the incoming
address stream, the cache reduces the load on the rest of the memory hierarchy
by holding the current working set of data and instructions. Accesses that are
serviced by the cache are termed cache-hits and are completed very quickly;
accesses that are not held by the cache are termed cache-misses and take much
longer to complete since main memory must be accessed. Since locality should
guarantee more cache-hits than cache-misses, performance of the average case
application is improved. However, given that many addresses in memory can
map to the same location in the cache, data items can compete for space and
evict each other; this is termed cache interference or contention.

Historic notes on the implications of data dependent timing variation as a
result of cache behaviour can be found in the literature [15,28]. However, the
study of cache behaviour in the context of security gained pace with the birth of
side-channel analysis as a research topic within cryptography. Specifically, one
finds that Kocher [20] looked at the effect of memory access on execution time,
and Kelsey et al. [18] predicted that the timing dependent behaviour of S-Box
access in Blowfish, CAST and Khufu could leak information to an attacker. This
was followed with more concrete attacks on DES by Page [25], who assumed
cache behaviour would be visible in a profile of power consumption, and Tsunoo
et al. [29,30] who simply required that an attacker timed the cipher over many
executions. Further break-throughs were made by Bertoni et al. [10] and Bern-
stein [9] who applied power and timing analysis attacks to AES. The former work
shows cache behaviour is observable in a power trace (although using some sim-
plifying assumptions), the latter shows that attacks can be mounted remotely;
both further magnify the danger of cache attacks in an operational context.
The issue of exploiting cache based vulnerabilities remotely was further stud-
ied by Acıiçmez et al. [6]. Finally, Percival [27] demonstrated an attack against
CRT based RSA utilising the Hyper-Threading capability of Intel Pentium 4
processors but essentially relying on cache behaviour as a means of leaking in-
formation. Osvik et al. [23] extended this by applying the active-monitor attack
paradigm (rather than concurrent hyper-threads), which allows one process to
spy on the cache behaviour of another and thus make deductions about inter-
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nal, secret state. Although various defence methods have been proposed [24,13],
attack methods using both data caches [12,11,3] and instruction caches [1] are
an active research area.

2.3 Branch Prediction Based Attacks

As a result of pipelined processor design, branches in control flow (such as loops
or conditionals) represent a significant performance penalty. During the period
between when a branch instruction is fetched into the pipeline and when it is
executed, the fetch unit potentially stalls because it cannot be sure where to
fetch instructions from: either execution progresses to the next instruction or
the (unknown) branch target. The use of speculative execution helps to mask
the resulting performance penalty. Essentially the processor makes a prediction
of whether the branch will be taken and if so, where the branch target is. If the
guess is correct then execution can continue with no penalty, if the branch is
incorrect the pipeline content must be emptied of invalid instructions at some
cost. A central requirement of efficient processor design is effective prediction
of whether if branch will be taken or untaken, and prediction of the branch
target address where execution continues if the branch is taken; for an in depth
description see [26, Chapter 3].

Prediction of the branch target is often achieved using a Branch Target Buffer
(BTB) which is a specialised form of cache memory: for a given address (i.e.
where a branch is located) it stores the likely branch target. Like cache memory,
use of the BTB can produce data dependent timing variation during program
execution. Namely, if a BTB entry for a given branch is not present the processor
is forced to make an uninformed prediction and potentially updating the BTB.
Recent work by Acıiçmez et al. [5,4] takes advantage of this feature by forcibly
evicting BTB entries and using the resulting behaviour to reason about the
direction of the branch and hence the program control-flow. Their work is similar
in concept to Osvik et al. [23] in that they use a spy process to inspect the state of
the branch prediction mechanism. Unlike attacks using the data and instruction
caches, attacks against the branch prediction mechanism are easier to defend
against using program transformations; see for example proposals by Agosta
and Pelosi [7] and Acıiçmez et al. [2].

3 Power Analysis Attacks on RSA

Many public key cryptosystems make use of arithmetic modulo some number
N . In particular, encryption and decryption operations in RSA is achieved using
a modular exponentiation composed from a series of modular multiplications.
The so-called Montgomery representation [22] offers an efficient way to perform
such arithmetic. To define the Montgomery representation of x, denoted xM ,
one selects an R = bt > N for some integer t; the representation then specifies
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Algorithm 1. The CIOS method for Montgomery multiplication

Input: An l-bit modulus N = (ns−1, ns−2, ..., n0), operands A = (as−1, as−2, ..., a0)
and B = (bs−1, bs−2, ..., b0) in the range [0, N − 1], precomputed factor n′

0 =
−n−1

0 mod 2w.
Output: Montgomery product P = A · B · 2−l mod N .
1: P ← 0
2: for i = 0 to s − 1 do
3: u ← 0
4: for j = 0 to s − 1 do
5: (u, v) ← pj + aj · bi + u
6: pj ← v
7: end for
8: (u, v) ← ps + u
9: ps ← v

10: ps+1 ← u
11: q ← p0 · n′

0 mod 2w

12: (u, v) ← p0 + n0 · q
13: for j = 1 to s − 1 do
14: (u, v) ← pj + nj · q + u
15: pj−1 ← v
16: end for
17: (u, v) ← ps + u
18: ps−1 ← v
19: ps ← ps+1 + u
20: end for
21: if P ≥ N then P ← P − N end if
22: return P

that xM ≡ xR (mod N). To compute the product of xM and yM held in Mont-
gomery representation, one interleaves a standard integer multiplication with
an efficient reduction technique tied to the choice of R. We term the conglom-
erate operation Montgomery multiplication. Algorithm 1 outlines the so-called
Coarsely Integrated Operand Scanning (CIOS) method which is regarded as the
most efficient way to realise Montgomery multiplication. In the following, long
integer numbers are represented as an s-word array of word size w.

To perform RSA encryption, one uses a public key e and an l-bit modulus
N to transform a plaintext message P into a ciphertext C by computing C =
P e mod N . To decrypt, the corresponding private key d is used to recover the
plaintext by computing P = Cd mod N . A basic technique to realise the modular
exponentiation operation, in combination with Montgomery arithmetic, is the
square-and-multiply method in Algorithm 2. Note that only when ki = 1 is the
multiplication step performed; since k is secret during RSA decryption this can
present a problem in that the control flow depends on the exponent. In [34], the
authors describe differential power analysis attacks to reveal k when using the
square-and-multiply technique within RSA.
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Algorithm 2. The square-and-multiply algorithm for exponentiation

Input: An integer M and an l-bit exponent k = (kl−1, kl−2, . . . , k0).
Output: X = Mk.
1: X ← M
2: for i = l − 2 to 0 do
3: X ← X2

4: if ki = 1 then
5: X ← X · M
6: end for
7: return X

3.1 A Single-Exponent, Multiple-Data (SEMD) Attack on RSA

The SEMD attack [34] assumes that the cryptographic device performs modular
exponentiation with both the secret exponent under attack and some publicly
known exponent. Comparing the resulting power profiles allows the attacker to
draw conclusions about the secret parameter. In order to average out the noise
components on a real cryptographic device, the attacker collects m profiles,
denoted by Si, and computes the mean power profile

S̄ =
1
m

m∑

i=0

Si.

where S̄ and P̄ denote the mean power profiles for exponentiation with the secret
exponent and the known exponent respectively. A zero value in the difference
signal D̄ = S̄ − P̄ indicates that the same operation is performed within the
exponentiation, whereas a nonzero value means that different exponentiation
operations are executed.

3.2 Multiple-Exponent, Single-Data (MESD) Attack on RSA

In a MESD attack [34], the secret exponent is revealed using an iterative, bit-
by-bit method. We assume that the attacker is in a position to perform modular
exponentiation of a constant value M with arbitrary exponents of his choice.
The basic idea for the MESD attack is sketched in Algorithm 3.

In the first step, we collect the power profile S̄M of a modular exponentiation
using the secret exponent. In each iteration we try to recover the i-th bit of the
secret exponent under the assumption that we have successfully recovered the
first i − 1 bits. Variable g keeps track of the correct guesses until the (i − 1)-th
bit. Next, the attacker sets the i-th bit of g to 0 and 1 respectively, and collects
the corresponding power profiles S̄0 and S̄1. Depending on which of these two
power profiles correlates best with S̄M reveals another bit of the secret exponent.
For instance, the attacker could compute the difference signals D̄0 and D̄1 to
correlate the power profiles:

D̄0 = S̄M − S̄0 and D̄1 = S̄M − S̄1
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Algorithm 3. An algorithm for a Multiple-Exponent, Single-Data (MESD) attack
against the square-and-multiply algorithm

1: M ← random integer value
2: Collect S̄M

3: g ← 0
4: for i = l − 2 to 0 do
5: Set gi = 0 and collect S̄0

6: Set gi = 1 and collect S̄1

7: Compare S̄0 and S̄1 to S̄M

8: Decide which guess correlates best with S̄M

9: Update g with the correct guess
10: end for
11: Return g

In so doing, the difference signal obtained with the correct guess remains zero for
a longer time. At the end of the attack, the variable g holds the secret exponent.

3.3 Zero-Exponent, Multiple-Data (ZEMD) Attack on RSA

It is assumed that the attacker can exponentiate random messages M with the
secret exponent e and collect the resulting power traces [34]. The attack itself
proceeds in a similar fashion as the MESD attack. In each step we guess the i-th
bit of the secret exponent, assuming that the first i− 1 bits have been recovered
correctly. Unlike in a MESD attack, where the reference power profiles for both
guesses are generated with the real cryptographic device, the attacker has to be
able to simulate the intermediate results of the square-and-multiply algorithm.

4 Low Power Cache Memory Design

Beyond the threat of power analysis attacks, power consumption plays an im-
portant role in mobile and ubiquitous computing devices. For a processor within
a mobile telephone, low power consumption is a good selling point; within a
device such as a sensor node it is a vital operational characteristic. This has lead
to significant research into low power design and manufacturing techniques. The
design of low power memory hierarchies is a specific area of interest given that
memory, cache memories in particular, form a significant component in overall
power consumption.

The overall power consumption in SRAM caches can be divided into dynamic
and static components. Dynamic power dissipation occurs when a logic gate
switches from one state to another only; static power is dissipated by every
logic gate independent of its switching activity. Originally the dynamic com-
ponent dominated the overall power consumption. However, as transistors have
become smaller, and hence their density has increased, static power dissipation
has started to have a major impact on the overall power consumption. In fact,
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Fig. 1. Gated-Vdd memory cell Fig. 2. Drowsy memory cell

static leakage is expected to dominate the total power consumption of future
processor generations.

Although there are many approaches to reduce power dissipation in cache
memories, the gated-Vdd technique suggested by Powell et al. [31] and the drowsy
cache design of Flautner et al. [14,19] are attractive. Considering data caches
only from here on, memory cells in a gated-Vdd structure can be forced into a
low power mode using an extra high threshold transistor that disconnects the
power supply to the cell. Figure 1 shows the implementation of a conventional
6-T memory cell using a PMOS gated Vdd transistor in the power supply path.
In case that the memory cell is not used, the gated Vdd transistor simply turns
off the power supply to the memory cell. While this technique is effective in
minimising power dissipation, the information stored in a cell is not preserved;
the design is referred to as a non-state-preserving cache. In [14,19], Flautner et
al. introduce an alternative, state-preserving technique. Lines within a drowsy
cache are constructed using memory cells capable of operating in a normal mode,
where they can be freely read or written to, and a drowsy, low power mode where
they retain their state but need to be woken before any access can occur. Such
a drowsy memory cell is realised by introducing two extra PMOS transistors in
the power supply path of a standard 6-T memory cell as illustrated in Figure 2.
Depending whether the memory cell is in use or not, either the normal supply
voltage or the low supply voltage is passed to the memory cell. Both gated-
Vdd and drowsy caches switch cache lines into the low power according to some
policy [14, Section 2]. Two basic approaches can be identified: the “simple”
policy powers down all cache lines in a periodic manner, the “no access” policy
only switches caches lines into low power mode that have not been accessed in
a specified number of cycles.
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Unlike in a gated-Vdd structure, where a deactivated cell line is fully discon-
nected from the power supply, a cell in a drowsy cache switches from the power
supply Vdd to a lower power supply when put into low power mode. There-
fore, a cache line in low power mode dissipates less leakage with the gated-Vdd

technique. However, due to its non-state-preserving nature accessing a powered
down cache line in a gated-Vdd structure causes a cache miss. Such a cache
miss involves access to the second level cache, which in turn is costly in terms
of power dissipation and execution time. As a consequence, one might assume
that drowsy caches outperform gated-Vdd caches thanks to its state-preserving
property. However, Li et al. [32] disprove this assumption by comparing the two
techniques under discussion. The results indicate, that under certain operating
conditions its preferable to use the non-state-preserving technique.

5 Low Power Cache Memory as a Side-Channel

Assume that some mobile computing device with a low power cache uses the
square-and-multiply method to realise RSA encryption and decryption oper-
ations. We claim that such a device is vulnerable to a power analysis based
side-channel attack as a direct result of the low power cache behaviour. We
use simulated devices equipped with gated-Vdd and drowsy caches as targets to
investigate two attacks.

5.1 Using the Gated-Vdd Cache for Attack

To provide a simulation platform for the non-state-preserving, gated-Vdd cache
we used Sim-Panalyzer [33], an architectural level cycle accurate power estima-
tor built using the SimpleScalar [36] framework. We modified Sim-Panalyzer to
simulate a L1 gated-Vdd data cache using the “simple” policy. That is, all cache
lines are periodically switched into a low power mode independent of the data
access pattern. To best model the type of processor within a mobile comput-
ing device, we forced Sim-Panalyzer to issue instructions in-order; the L1 data
cache consisted of 512 lines, each of 16 bytes, and was 4-way set-associative.
Based on the CIOS method for Montgomery multiplication, we implemented
RSA exponentiation for l = 1024 with a word size w = 32.

Figure 3 shows the output of our simulation platform while executing such
an exponentiation. In this fragment, two sequential squarings are executed at
the start of the exponentiation; we have that the exponent is of the form e =
(1, 0, . . .). One can identify a periodic group of peaks in power consumption that
are caused by memory accesses after all cache lines have been put into a low
power mode. In Figure 4 the same fragment of the power profile is pictured
except that the exponent is altered so that a multiplication operation is exe-
cuted where before we had a squaring; we have that the exponent is of the form
e = (1, 1, . . .). Comparing these two power profiles to each other, one can clearly
detect eight additional peaks, labelled δ1 . . . δ8, in Figure 4. Algorithm 1 pro-
cesses one operand on a word-by-word basis, each word is then multiplied with
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Fig. 3. A power profile fragment for two squarings in sequence
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Fig. 4. A power profile fragment for a squaring followed by a multiplication

all the words of the other operand to create the partial products. Assume all
cache lines are switched into low power mode before we compute the CIOS al-
gorithm. Initially only one operand is loaded into the data cache. In contrast to
a squaring operation, the multiplication requires a second operand to be loaded
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consecutively into the cache as the algorithm proceeds. Hence, the peaks δ1 . . . δ8
are caused by eight accesses to the L2 cache so that the second operand can be
loaded into the L1 cache.

Based on this observation that the cache offers a way to distinguish between
squarings and multiplications, one can easily mount a side-channel attack to
recover the secret exponent. We wrote a script that performs the steps in Algo-
rithm 3 using the output of our simulation platform to provide power profiles.
The noiseless environment allows us to collect useful power profiles S̄i for an
arbitrary exponent with just one simulation. At each iteration, we assume that
the first i − 1 bits of the exponent are correct and generate two power profiles
S̄0 and S̄1 with Sim-Panalyzer where the i-th bit is set to 1 and 0 respectively.
We compare both power profiles to the power profile S̄M of the secret exponent
using the correlation function in Matlab, repeating the process until we have
successfully recovered the whole secret exponent.

5.2 Using the Drowsy Cache for Attack

Recall that with a state-preserving cache no cache misses occur when accessing
cache lines in low power mode. In order to attack such a cache structure we study
the static power dissipation as opposed to non-state-preserving caches where we
focus on the dynamic component of the power consumption. In this context we
used the Hotleakage [37] simulator tool, a cycle accurate architectural model for
leakage power, to output the static power consumption of the cache. To match
the simulation platform from above, we equipped Hotleakage with a 4-way set-
associative drowsy L1 data cache with 512 lines, of 16 bytes each, and force the
simulator to issue instructions in-order. The status of the cache lines is updated
according to the “simple” policy.

Because a squaring needs one operand and a multiplication needs two, more
cache lines are in a drowsy state when performing a squaring operation than
when executing a multiplication operation. Therefore, one would expect that
static power dissipation would be higher during a multiplication due to the
larger number of active cache lines. However, Kim et al. [19] state that the
leakage for a cell in drowsy mode is 6.24 nW, whereas a cell not in low power
mode dissipates 78 nW. If we map these values onto our cache architecture,
a cache line in low power mode consumes 0.8 μW whereas an active cache line
contributes approximately 2 μW to the total leakage power. Hence a cache line in
drowsy mode makes a difference of 1.2 μW in the power profile, a difference that
cannot be accurately measured in practise. Although this means the attack is not
realistic at the present, as the contribution of static power dissipation increases
within modern processor designs and RSA operands sizes increase, this attack
scenario could be applicable in the future.

5.3 Countermeasures Against Attack

There is no silver-bullet solution for defence against side-channel attack. Thus,
in common with other micro-architectural side-channel attacks, here one can
deploy defence techniques at the algorithmic and architectural level. Effective
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Algorithm 4. The square-and-multiply-always algorithm for exponentiation

Input: An integer M and an l-bit exponent k = (kl−1, kl−2, . . . , k0).
Output: X[2] = Mk.
1: X[2] ← M
2: for i = l − 2 to 0 do
3: X[0] ← X[2]2

4: X[1] ← X[2] · M
5: X[2] ← X[ki]
6: end for
7: Return X[2]

examples at the algorithmic level include the square-and-multiply-always method
in Algorithm 4. Essentially the multiplication operation is always performed so
there is no advantage in distinguishing it from a squaring. However, although this
countermeasure is simple to implement, it has a significant performance penalty.

We suggest that a far better approach would be to act at the architectural level
by adopting a processor design strategy that considers security as a first-class
goal. An example of such a strategy would be to make the cache operation visible
to the programmer as part of the ISA rather than invisible as part of the micro-
architecture. For example, the Intel i960 [16] and XScale [17] architectures both
employ schemes whereby the contents of the instruction cache can be protected
against replacement (or locked) under the control of the program being executed.
Through a simple instruction set extension, a similar scheme in the context of
low power caches would see sections of the cache (or potentially the whole cache)
locked into an active state during execution of security critical code. This would
prevent cache lines being periodically forced into a low power mode and hence
prevent the data dependant behaviour which permits our attack.

A typical criticism of this sort of approach is that it can impact adversely on
other design goals (such as performance or area); our suggestion is that with-
out some action in this and other areas, micro-architectural vulnerabilities will
remain unaddressed and start to cause more significant problems. That is, com-
puter architects need to change their focus: if security is a critical in hosted
applications, it is always worthwhile making a compromise to honour that fact
rather ignoring the issue and concentrating on more traditional design goals.

6 Conclusion

In this paper, we have investigated a side-channel vulnerability introduced by
the use of low power cache memory. Our results indicate that the power profile
resulting from use of a non-state-preserving L1 data cache allows one to draw
conclusions about control flow within the square-and-multiply algorithm. Ex-
ploiting this fact, we launched a successful MESD side-channel attack to recover
the entire secret exponent of a typical RSA implementation. Running the RSA
exponentiation with a state-preserving L1 data cache, no assumptions about the
control flow can be made; this is due to the low signal-to-noise ratio. However,
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we argue that such an attack could pose a threat in future architectures as both
the static power dissipation and the operand length of RSA increase.
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Abstract. Software based side-channel attacks allow an unprivileged spy process
to extract secret information from a victim (cryptosystem) process by exploiting
some indirect leakage of “side-channel” information. It has been realized that
some components of modern computer microarchitectures leak certain side-
channel information and can create unforeseen security risks. An example of such
MicroArchitectural Side-Channel Analysis is the Cache Attack — a group of
attacks that exploit information leaks from cache latencies [4,7,13,15,18]. Public
awareness of Cache Attack vulnerabilities lead software writers of OpenSSL
(version 0.9.8a and subsequent versions) to incorporate countermeasures for
preventing these attacks. In this paper, we present a new and yet unforeseen side
channel attack that is enabled by the recently published Simple Branch Predic-
tion Analysis (SBPA) which is another type of MicroArchitectural Analysis,
cf. [2,3]. We show that modular inversion — a critical primitive in public key
cryptography — is a natural target of SBPA attacks because it typically uses the
Binary Extended Euclidean algorithm whose nature is an input-centric sequence
of conditional branches. Our results show that SBPA can be used to extract secret
parameters during the execution of the Binary Extended Euclidean algorithm.
This poses a new potential risk to crypto-applications such as OpenSSL, which
already employs Cache Attack countermeasures. Thus, it is necessary to develop
new software mitigation techniques for BPA and incorporate them with cache
analysis countermeasures in security applications. To mitigate this new risk in
full generality, we apply a security-aware algorithm design methodology and
propose some changes to the CRT-RSA algorithm flow. These changes either
avoid some of the steps that require modular inversion, or remove the critical
information leak from this procedure. In addition, we also show by example
that, independently of the required changes in the algorithms, careful software
analysis is also required in order to assure that the software implementation does
not inadvertently introduce branches that may expose the application to SBPA
attacks. These offer several simple ways for modifying OpenSSL in order to
mitigate Branch Prediction Attacks.
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186 O. Acıiçmez, S. Gueron, and J.-P. Seifert

1 Introduction

Side channel attacks are methods by which an attacker can extract secret information
from an implementation of a cryptographic algorithm. They come in various flavors,
exploiting different security weaknesses of both the cryptographic implementations
and the environments on which the cryptographic applications run. MicroArchitectural
Side-Channel attacks are a special new class of attacks that exploit the microarchitec-
tural throughput-oriented behaviour of modern processor components. These attacks
capitalize on situations where several applications can share the same processor re-
sources, which allows a spy process running in parallel to a victim process to extract
critical information.

Cache Attacks are one example of MicroArchitectural Side-Channel attacks. In one
flavor of Cache Attacks, the adversary takes advantage of a specifically crafted spy
process. This spy first fills the processor’s cache before the victim process (i.e., cipher
process) takes over at context switch. In the subsequent context switch the spy process
experiences cache evictions that were caused by the operation of the victim process,
and the eviction patterns can be used for extracting secret information. This concept
was used ([18]) for demonstrating an attack on OpenSSL-0.9.7. The attack focused on
the Sliding Windows Exponentiation (SWE) algorithm for computing modular expo-
nentiation - part of the RSA decryption phase that uses the server’s private key.

As a result, the subsequent version OpenSSL-0.9.8 included mitigations against this
attack. The SWE algorithm was replaced with a Fixed Window Exponentiation (FWE)
algorithm, using window length 5. In this algorithm, a sequence of 5 repeated modular
squares is followed by a modular multiplication by the appropriate power of the base,
depending on the value of the 5 scanned bits of the exponent. The powers of the base
are computed once, before the actual exponentiation, and stored in a table. Each entry
of this table is stored in memory in a way to span multiple cache lines. This way, the
eviction of any table entry from the cache does not expose information on the actual
the table index of this entry. Another incorporated mitigation is “base blinding”: the
exponentiation base is multiplied by some factor (unknown to the adversary), and the
final exponentiation result is then multiplied by a corresponding factor that cancels
out the undesired effect. This technique eliminates the “chosen plaintext” scenario that
enables remote timing attacks such as [5,9].

Branch Prediction Analysis (BPA) and Simple Branch Prediction Analysis (SBPA)
attacks are a new type of MicroArchitectural attacks that have been recently published
by Acıiçmez et al. [1,2,3,6]. These attacks exploit the branch prediction mechanism,
which is nowadays a part of all general purpose processors. Microprocessors speed
up their performance by using prediction algorithms to guess the most probable code
path to execute, and fill the pipeline with the corresponding instructions. When the
speculatively executed instruction flow turns out to be wrong, the execution has to
start over from the correct one. Good prediction mechanisms/algorithms are those that
have high correct prediction rates, and the development of such mechanisms is part of
the technological advances in microprocessors. Furthermore, deeper pipelines enhance
the average performance. Measurable timing differences between a correct and incor-
rect prediction are the inevitable outcome of such performance optimization, which is
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exactly what the BPA/SPBA attacks capitalize on. In theory, a spy process running on
the target machine, together with the victim process, can use these timing differences
as a side-channel information and deduce the precise execution flow performed by the
victim process. This can potentially lead to a complete break of the system if the soft-
ware implementation of the victim process is written in a way that knowledge of the
execution flow provides the attacker with useful information.

Acıiçmez et al. showed that BPA and SBPA can be used to allow a spy process to
extract the execution flow of an RSA implementation using the Square and Multiply
(S&M) exponentiation algorithm. They demonstrate the results on the S&M algorithm
implemented in OpenSSL-0.9.7. The initially published BPA attack required statistical
analysis from many runs and could be viewed as difficult to implement in practice.
However, the subsequent demonstration of the SBPA attack showed that measurements
taken from a single run of the S&M exponentiation is sufficient to extract almost all of
the RSA secret exponent bits.

The S&M algorithm is not frequently used in practice because there are more effi-
cient exponentiation algorithms such as SWE, which is used by OpenSSL. The attack
was mounted on OpenSSL-0.9.7 where the window size was changed from the default
value w = 5 to w = 1 which degenerates SWE to S&M. Attacking the S&M algo-
rithm was only a case study that showed the potential of SBPA. However, as we show
in this paper, the actual scope of SBPA attacks is much broader. We identify a novel
side-channel attack which is especially enabled by the SBPA methodology.

Obviously, it is unreasonable to handle the new (and also the old) threats by deacti-
vating branch prediction or by disabling multi-process capabilities in general purpose
processors and in operating systems. Thus, the conclusion is that cryptographic software
applications that run on general platforms need to be (re-)written in an SBPA-aware
style. To this end, another focus of this paper is on a software mitigation methodology
for protecting applications against SBPA attacks.

The paper is organized as follows. Section 2 briefly recalls some basic facts and de-
tails of RSA and of its implementation in OpenSSL. The next section presents then the
central contribution of the present paper. This is our novel SBPA side-channel against
the BEEA, which enables full reconstruction of the input parameters to the BEEA —
even if we assume that they are all completely unknown. Section 4 illustrates new vul-
nerabilities which we found in OpenSSL in the presence of potential SBPA attacks.
In this section we also explain why these attacks are potentially feasible and can be
mounted on almost all platforms. In Section 6 we explain the necessary software coun-
termeasures to protect the openSSL CRT-RSA library against branch prediction attacks.
The paper finishes with our conclusions on the BPA story as we currently see it.

2 Preliminaries and Notations

To facilitate smooth reading of the details in the paper, we provide a very brief descrip-
tion of the RSA cryptosystem and its corresponding implementation in OpenSSL. For
a more detailed exposition of both topics we refer the reader to [12] and to [16].
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2.1 RSA Parameters

RSA key generation starts by generating two large (secret) random primes p and q,
where their n-bit long product N = p q is used as a public modulus. Then, a public
exponent e is chosen (e = 216+1 by default in OpenSSL), for which d = e−1 mod (p−
1)(q − 1) is the private exponent. Figure 1 shows the RSA key generation flow.

RSA is used for both encryption and digital signature, where signing and decrypting
messages require the use of the private exponent and modulus, while signature verifica-
tion and encrypting messages require the used on only the public exponent and modulus.
Factoring N (i.e., obtaining p and q) immediately reveals d. If an adversary obtains the
secret value d, he can read all of the encrypted messages and impersonate the owner of
the key for signatures. Therefore, the main purpose of cryptanalytic attacks on RSA is
to reveal either p, q, or d.

input: null
output: (N , p, q, e, d, dp, dq, C2)

procedure RSA KeyGen:

(1) generate random primes p and q
(2) compute N = p ∗ q
(3) choose e ∈ Z

∗
N

(4) d = Mod Inverse(e, ((p − 1)(q − 1))) // compute (d = e−1 mod (p − 1)(q − 1))
(5) (null, dp) = Division(d, p − 1) // compute dp = d mod (p − 1)
(6) (null, dq) = Division(d, q − 1) // compute dq = d mod (q − 1)
(7) C2 = Mod Inverse(q, p) // compute (C2 = q−1 mod p)

Fig. 1. RSA key generation procedure

2.2 RSA Implementation Using Chinese Remainder Theorem

OpenSSL, as many other implementations, uses the Chinese Remainder Theorem (CRT).
This allows to replace modular exponentiation with full-length modulus N with two
modular exponentiations with half-length modulus p and q. This speedups the modular
exponentiation by a factor of approximately 4.

In order to employ CRT, the following additional values are computed during the key
generation procedure: dp = d mod (p−1), dq = d mod (q−1), and C2 = q−1 mod p.
To decrypt a message M , the CRT procedure starts with reducing M modulo p and q,
calculating Mp = M mod p, Mq = M mod q. Then, the two modular exponents Sp =
M

dp
p mod p and Sq = M

dq
q mod q are calculated, and the desired result S is obtained

bye the so-called “Garner re-combination” S = Sq + (((Sp − Sq) ∗ C2) mod p) ∗ q.
Figure 2 shows the CRT exponentiation flow as used in the current OpenSSL version
(OpenSSL-0.9.8).
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input: ciphertext M , RSA key N , p, q, d, dp, dq, C2

output: decrypted plaintext A = Md mod N

procedure RSA Mod Exp():

// exponentiation modulo q
(1) (null, Mq) = Division(M , q) // Mq = M mod q

(2) Sq = Mod Exp(Mq , dq, q) // Sq = M
dq
q mod q

// exponentiation modulo p
(3) (null, Mp) = Division(M , p) // Mp = M mod p

(4) Sp = Mod Exp(Mp, dp, p) // Sp = M
dp
p mod p

// combine Sp and Sq using Garner’s method:
// compute S = Sq + (((Sp − Sq) ∗ C2) mod p) ∗ q
(5) S = Sp − Sq

(6) if S < 0 then S = S + p
(7) S = Multiplication(S, C2)
(8) (null, S) = Division(S, p)
(9) S = Multiplication(S, q)
(10) S = S + Mq

(11) return A = S

Fig. 2. Modular RSA exponentiation procedure with CRT

Modular exponentiation is based on a sequence of modular multiplications. These
are typically, and in particular in OpenSSL, performed by using the Montgomery Mul-
tiplication (MMUL) algorithm.

2.3 Fixed Window Exponentiation

OpenSSL-0.9.8 uses the so called Fixed Window Exponentiation (FWE) algorithm with
a window size of w = 5. To compute Mdp mod p (analogously hereafter also for
q), the algorithm first computes a table of the 2w − 1 vectors, Vi = M i mod p, for
1 ≤ i ≤ 2w − 1. The exponent d is then scanned in groups of w bits to read the
value of the corresponding window i, 1 ≤ i ≤ 2w − 1. For each window, it performs
w consecutive modular squarings followed by one modular multiplication with Vi, c.f.
Figure 3.

2.4 Base Blinding

To thwart statistical side-channel attacks (e.g., [9]), OpenSSL-0.9.8 also applies a base
blinding technique, as illustrated in Figure 4. A pair (X , Y ) is generated, where X is a
random number and Y = X−e mod N . Then, instead of directly computing Md mod
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input: M , d, N (M < N , N is odd, and d is k ∗ w bits long)
output: Md mod N

notation: d = d[k ∗ w − 1] . . . d[0], where d[0] is the least significant bit of d

Procedure:
// computation of the table values
V1 = M
for i from 2 to 2w − 1

Vi = Vi−1 ∗ M mod N

// actual exponentiation phase
S = 1
for i from k − 1 to 0 do

S = S2w

(mod N)
// scanning the window value
wvalue = 0
for j from w − 1 to 0 do

wvalue = wvalue ∗ 2
if d[i ∗ w + j] = 1 then wvalue = wvalue + 1

// multiplication with the table entry
S = S ∗ Vwvalue mod N

return S

Fig. 3. Fixed Window Exponentiation Algorithm

Input: c (ciphertext), rsa (RSA parameters: N , p, q, d, dp, dq, C2)
Output: m (decrypted plaintext)

Procedure:
(1) (X, Y ) = Get Blinding(rsa) // X is a random; Y = X−e mod N
(2) c = Blinding Convert(X, c) // c = Y ∗ c mod N

(3) m = RSA Mod Exp(c, rsa) // m = cd mod N
(4) m = Blinding Invert(Y , m) // m = X ∗ m mod N
(5) padding m and output m

Fig. 4. RSA decryption procedure with base blinding, as implemented in OpenSSL

N , the base M is first modular-multiplied by Y and the exponentiation computes (M ∗
Y )d mod N (e.g., by using the CRT). After the exponentiation, the result is modular-
multiplied by X to obtain the desired result, because X∗(M ∗Y )d mod N = Md mod
N . Note that if (X , Y ) is a proper pair, then (X2 mod N , Y 2 mod N ) is also a proper
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pair. Therefore, once a proper blinding pair is generated, subsequent new pairs can be
obtained for subsequent message decryptions, by performing only two modular squaring
operations. By default, OpenSSL refreshes the blinding pair every 32 exponentiations.

The multiprecision operations of OpenSSL are handled by a multiprecision arith-
metic library called BIGNUM. The implementations in BIGNUM library also intro-
duces SBPA vulnerabilities to OpenSSL. The complete details of BIGNUM library are
out of the scope in this paper. Yet, we outline the SBPA vulnerabilities introduced by
this library after presenting a new attack on the BEEA in the next section.

3 The Main Result: Modular Inversion Via Binary Extended
Euclidean Algorithm Succumbs to SBPA

Modular inversion operation is at the heart of public key cryptography. The most fre-
quently used algorithm for modular inversion is the well known Extended Euclidean
Algorithm (EEA). Due to the “unpleasant” division operations which are heavily used
in the EEA, it is often substituted by another variant called the Binary Extended Eu-
clidean Algorithm (BEEA), cf. [12]. BEEA replaces the complicated divisions of the
EEA by simple right shift operations. It achieves performance advantages over the clas-
sical EEA and is especially efficient for large key-lengths (around 1024-2048 bits). The
BEEA is indeed used by OpenSSL for these bitlengths.

The performance advantage of BEEA over the classical EEA is obtained via a “bit-
wise-scanning” of its input parameters. As we show here, in the presence of SBPA, this
property opens a new side-channel that allows an easy reconstruction of unknown input
parameters to the BEEA.

To derive our new SBPA-based side-channel attack against the BEEA, we start from
the classical BEEA as described in [12] and illustrated in Figure 5.

The correctness of the BEEA (and also of the EEA) relies on the fact that the follow-
ing equations

x · A + y · B = u (1)

x · C + y · D = v (2)

hold at any iteration step of the algorithm. In the case where gcd(x, y) = 1, we also
have at the termination

x · A ≡ 0 mod y (3)

x · a ≡ 1 mod y, (4)

which means that a is the inverse to x modulo y.
We note here that the algorithm may terminate with a C < 0, which would need in

practice one additional step, namely a := x + C, to assure that a ∈ {0, . . . , y − 1}.
However, since this conditional final end addition is of no further interest because as
it does not affect our unknown input reconstruction problem, we ignore it for the rest
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input: integers x, y
output: integers a, b, v such that ax + by = v, where v = gcd(x, y)

1. g := 1;
2. while x and y are even do

x := x/2, y := y/2, g := 2g;
3. u := x, v := y, A := 1, B := 0, C := 0, D := 1;
4. while u is even do

u := u/2;
if A ≡ B ≡ 0 mod 2 then

A := A/2, B := B/2
else

A := (A + y)/2, B := (B − x)/2;
5. while v is even do

v := v/2;
if C ≡ D ≡ 0 mod 2 then

C := C/2, D := D/2
else

C := (C + y)/2, D := (D − x)/2;
6. if u ≥ v then

u := u − v, A := A − C, B := B − D
else

v := v − u, C := C − A, D := D − B;
7. if u = 0 then

a := C, b := D, and return(a, b, g · v)
else

goto 4;

Fig. 5. Binary Extended Euclidean Algorithm

of our discussion. Another important detail to point out is that for computing modular
inversion, i.e., gcd(x, y) = 1, the while-loop in Step 2 is never executed.

To derive our SBPA-based side-channel attack, we extract from the BEEA flow only
the serial internal information flow regarding the branches that depend on the input
values u, v, and their difference u − v =: z. This flow is visualized in Figure 6, where
we simply “serialized” all the steps that are relevant to our case.

From Figure 6, we identify that the 4 critical input-dependent branches that produce
4 important information leaks. These can be put into two groups:

1. Number of right-shift operations performed on u.
2. Number of right-shift operations performed on v.
3. Number of subtractions u := u − v.
4. Number of subtractions v := v − u.

Thus, assuming that the branches in the BEEA flow are known due to a spy employ-
ing SBPA, the backward reconstruction of u and v from the termination values u = 0
and v = 1 is possible, as in Figure 3.
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Fig. 6. The information flow of the BEEA regarding u and v

Branch Reconstruction operation

1 u := 2 · u
2 v := 2 · v
3 u := u + v
4 v := v + u

To come up with a concrete reconstruction algorithm, we confine the 4 branches 1,
2, 3, and 4 into successive information leakage groups. A single iteration group com-
prises of the information whether branch 3 or branch 4 was executed, and additionally
the information on how often branch 1 and branch 2 was executed in this group. This
constitutes one group — the next group starts again with entering branch 3 or branch 4.
That is, for i = 1, . . . , � and j = 1, 2, we define

SHIFT Sj [i] := #{group i iterations spend in branch j},

and

SUBS[i] :=
{

“u” : if branch 3 is taken
“v” : if branch 4 is taken

Armed we the leaked information SHIFT Sj [·] and SUBS[·] which are obtained
by a (perfect) SBPA, our task is now to reconstruct x, y and W, X, Y, Z from the known
final values uf = 0 and vf = 1 such that
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uf · W + vf · X = x
uf · Y + vf · Z = y,

Here, for the sake of clarity, we explicitly keep the value uf and W and Y , although
they actually vanish due to uf = 0. The corresponding algorithm, illustrated in Figure 7,
accomplishes the task.

input: arrays SHIFT S[·] and SUBS[·] and �
output: integers W, X, Y, Z as above

1. W := 1, X := 0, Y := 1, Z := 0;
2. i := �;
3. for i = � down to 2 do

if SUBS[i] = “u” then
W := W << SHIFT S1[i], X := X << SHIFT S2[i],
W := W + Y , X := X + Z

else
Y := Y << SHIFT S1[i], Z := Z << SHIFT S2[i],
Y := W + Y , Z := X + Z;

4. Y := Y << SHIFT S1[1], Z := Z << SHIFT S2[1];
5. return(W,X, Y, Z);

Fig. 7. BEEA reconstruction from SBPA information

Thus, by the above exposition we have given a proof of the main contribution of the
present paper.

Theorem 1. For unknown numbers x and y with gcd(x, y) = 1 as inputs to the BEEA,
the side-channel information SHIFT Sj [·] and SUBS[·] (which can be obtained by a
perfect SBPA) can be used to completely reconstruct, in polynomial time, both x and y.

In the following sections, we show how this SBPA-enabled reconstruction theorem can
be used to compromise the security of the OpenSSL RSA-CRT version in several points
of the algorithm, and moreover — even in the presence of CA side-channel mitigations.

4 New SBPA Vulnerabilities in OpenSSL

4.1 On the Granularity of SBPA And the Actual Threat of SBPA For Almost All
Platforms

To illustrate the feasibility of attacking the BEEA algorithm with an SBPA spy or other
code constructions inside openSSL, we provide here some details on how, and at what
granularity, a spy process (or processes) can actually exploit the environment and extract
information.

Acıiçmez et al. showed that a carefully written spy process running simultaneously
with an RSA process, is able to collect almost all of the secret key bits during a single
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RSA decryption execution. They demonstrated the attack on a simplified S&M RSA
implementation, which means that the branches in that demonstration were separated
by thousands of cycles from each other. Moreover, this attack ran a spy that relied on
the simultaneous-multithreading (SMT) capability of the tested platform.

However, we point out here that the actual power of SBPA is most probably not
limited to this basic application where branches are widely separated, and not limited to
SMT capable platforms. In general, SBPA has the potential to reveal the entire execution
flow of a target process in almost any execution environment — with or without SMT.
We now explain the grounds for this claim.

MicroArchitectural attacks exploit shared microprocessor components to compro-
mise security systems by using spy processes. They require a quasi-parallel execution
of the spy and the “crypto” processes on the same processor. Although a hardware-
assisted SMT feature seems to be mandatory to achieve this, recent studies indicate the
opposite [13,14]. Neve et al. showed that it is possible to exploit some of the scheduling
functionality of operating system (OS) to accomplish the same effect on a non-SMT
platform — that is, as if the spy and crypto processes ran simultaneously on an SMT
platform. In fact, the idea of exploiting OS scheduling for side-channel attacks by using
a spy process and a trojan process, was published already in 1992 [10].

Their method of transferring SMT-based MicroArchitectural attacks to non-SMT
systems rely on the preemptive OS scheduling property, which is the way that on OS
handles multitasking capability. Multitasking operating systems allow for the execution
of multiple processes on the same computer, concurrently. In other words, each process
is given permission to use the processor’s resources, including the cache, branch pre-
diction unit, and other MicroArchitectural resources. When several different processes
run actively on the system, the OS assigns a certain maximum execution time (called
quantum) to the process that gets his turn to execute.

The preemptive OS scheduling property gives a process the ability to trigger a con-
text switch, i.e., yielding the CPU to another process, at any desired time before con-
suming the entire quantum. The interesting and security-critical point is what the OS
does afterwards. It indeed schedules the next process in the queue, but lets it run only
for the duration of the remaining part of the quantum that was mostly consumed by the
prior process. Neve et. al. used this OS functionality to stretch the very short execution
time of the AES over several quantums and could therefore obtain spy measurements
precisely centered around a very small number of instructions.

Using this result, we can safely speculate that it would be possible to apply SBPA
attacks at a fine-granularity of even a few hundred cycles and — in an idealized scenario
— to detect all the branches of an attacked application. This dramatically broadens the
scope of SBPA attacks, for example to attack the BEEA procedure.

We illustrate a possible attack path. A spy process can run until the end of a quantum,
but just before the end of this quantum — e.g., a couple of hundred cycles — trigger
a context switch. Then, the OS would let the crypto process run for a very short time
— the remaining time till the end of that quantum — and give the execution back to
the spy. In fact, an attacker can even use another “trojan process” to handle switching
spying independently.
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This method still does not allow us to analyze branches at the granularity of a few
cycles. However, note that the arithmetical and logical operations in RSA are multi-
precision, meaning that the operands are several machine-words long. Any such com-
putation in RSA requires execution of tens to hundreds of instructions. Furthermore,
the actual implementation of the BBEA algorithm in OpenSSL involves function calls,
which inherently consume overhead cycles. At the minimum, these functions declare
and initiate some variables, and need to execute some steps (in a loop). All these steps
together most probably will leave a sufficiently large window for a successful SBPA
attack.

Therefore — although we have not developed code to demonstrate this attack — we
strongly conjecture that an SBPA attack, coupled with this “OS trick”, has the potential
of revealing the entire execution flow of the BEEA on almost any platform. As we show
in the following section, if such an “ideal SBPA attack” is possible, and if a spy process
successfully enters the attacked system, this can compromise the security of the RSA
implementation of OpenSSL at several points.

4.2 New SBPA Vulnerabilities in OpenSSL Due to Theorem 1

In this section we describe several vulnerabilities that we have identified in OpenSSL,
in the context of SBPA attacks and Theorem 1 that shows how the inputs to the modular
inversion procedure can be extracted by an SBPA spy. Referring back to Section 2, we
can see that modular inverses are computed during the RSA computations when:

1. the private exponent d = e−1 mod (p − 1)(q − 1) is computed,
2. the CRT parameter q−1 mod p is computed,
3. the Montgomery constant −p−1 mod m (e.g. with m = 232) is computed, and
4. the masking pair (X , Y = X−e mod N ) is computed.

Now, the implications of Theorem 1 become clear. In cases 1-3, an SBPA attack can
directly compromise the secret RSA keys. In case 4, an SBPA attack can compromise
the blinding mitigation. If the blinding factor is revealed, the blinding mitigation tech-
nique to thwart statistical attacks collapses. In such a scenario, other and simpler attacks
could be launched. If the SBPA spy indeed compromises the blinding mitigation, the
situation is effectively a chosen-plaintext scenario, where the timing depends on the
chosen-plaintext and the secret primes. Clearly, a remote attack can now be mounted
on the application. We mention here two further attack scenarios: First, remote timing
attacks [9] that exploit timing differences due to the End Reduction (ER) step in the
Montgomery multiplications, and second remote timing attacks that exploit the early
exit short cut taken in the division algorithm. We add some details to explain the second
attack in the following.

Remote timing attacks that exploit the early exit short cut taken in the division
algorithm. The first step in the CRT algorithm, is reducing the message M modulo p
and q. This reduction is carried out by the BIGNUM Division function. There are two
branches in the Division procedure of OpenSSL-0.9.8, that leak information that could
potentially compromise the private key. Given A and B, Division (A, B) performs the
following:
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a. If A < B, Division (A, B) immediately returns the quotient 0, remainder B, and
exits.

b. If the divisor B has t words, and the first t words of A form a number which exceeds
B, the following is done, where b is the bitlength of B: 2tw < A < 2b+tw, and if it
is satisfies, Division (A, B) resorts to some shortcut path.

It follows that the execution time of Division is data dependent and could be used very
simple in a binary-search oriented algorithm to find p or q.

4.3 Vulnerability Due to Exponent Scanning in The FWE Procedure

The FWE algorithm is in theory immune to SBPA. Unlike S&M or SWE algorithms,
it does not involve exponent-dependent execution because the modular multiplica-
tions/squares are independent of the exponent value. However, the actual code im-
plementation of FWE in OpenSSL-0.9.8 makes it potentially susceptible to SPBA
attack. The routine that constructs the “window value”, while scanning the exponent
string does it via a bit-by-bit, i.e., an if-then-else method. The code invokes the func-
tion BN is bit set(a, n) whose task is to read the value of the nth bit of a. Actually,
BN is bit set is currently implemented as follows:

int BN_is_bit_set(const BIGNUM *a, int n)
{

int i,j;

bn_check_top(a);
if (n < 0) return 0;
i=n/BN_BITS2;
j=n%BN_BITS2;
if (a->top <= i) return 0;
return((a->d[i]&(((BN_ULONG)1)<<j))?1:0);

}

If the conditional statement in the last line of this function is actually performed
(i.e., not removed by the compiler), it can be exploited by an SBPA spy to completely
discover the secret exponent that is being scanned.

5 Software Mitigations to Protect OpenSSL Against the SBPA
Vulnerabilities

Our general methodology for creating an SBPA-aware RSA implementation is to first
assume that SBPA can reveal the entire flow of the execution. Under this assumption,
we scan through all steps of the algorithm to detect the conditional branches. For each
branch we consider the following question: if an attacker obtains the complete history of
this branch, would this provide him with useful information? Whenever the result to this
question is positive, we consider fixing the problem by either changing the algorithm
flow to eliminate the conditional execution, or by assuming that this branch is executed
in an off-line environment (i.e., before any spy can enter the system).



198 O. Acıiçmez, S. Gueron, and J.-P. Seifert

5.1 Fixing the Exponent Scanning Vulnerability

Mitigating this vulnerability is simple: the conditional statement in the last line
BN is bit set(a, n) needs to be removed. Since BN is bit set(a, n) checks whether the
input bit is 0 or 1, the function can simply return the value of that bit. We therefore
propose the following change in the code:

– Current Version:

return((a->d[i]&(((BN_ULONG)1)<<j))?1:0);

– Our Proposal:

return((a->d[i] >> j) & 0x01);

Remarks:

1. A more efficient way to handle the exponent scanning is to avoid the call to
BN is bit set function. The window values can be constructed by directly copying
the corresponding section of the exponent string at once (using shifts and logical
operations) instead of doing it in a bit-by-bit fashion.

2. The secret exponents dp and dq are fixed for a given RSA key. Thus, the window
values can be computed once, during the key generation phase, stored, and then
used per each exponentiation without re-scanning the exponent string.

3. A good compiler, particularly in an optimized mode, should be able to identify and
to automatically eliminate the discussed branch. In fact, when OpenSSL-0.9.8 is
compiled with a gcc compiler (using Linux operating system), the compiler indeed
removes the branches. However, this compiler optimizing property cannot be guar-
anteed for any compiler in any mode, and should not be considered as an automatic
mitigation.

5.2 A Minimal Set of Mitigation for CRT-RSA and Key Generation

In this section, we outline a few pin-pointed changes to OpenSSL-0.9.8, that can be
used for achieving (what seems to be) an SBPA-protected implementation.

The proposed changes are in the Big Numbers library of OpenSSL, particularly in
the functions
BN mod inverse( in, a, n) and BN div (dv, rm, num, divisor).

1. Avoiding the use of BEEA for modular inversion in BN mod inverse. For odd
n, whose bit-length is less than 450 (for a 32-bit machine) or less than 2048 bit (for
a 64-bit machine), the function BN mod inverse(in, a, n) uses the BEEA. In other
cases, it uses a general inversion algorithm that uses the division as implemented in
BN div(dv, rm, num, divisor). An easy mitigation technique is to eliminate the
branch that allows for selecting BEEA, thus to always use the general inversion via
Division.
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2. Avoiding other branches during modular inversion that uses BN div. To op-
timize performance the general inversion algorithm first checks if the divisor and
dividend are close and in that case does not invoke an BN Division (performing
the division in another method). Further, in intermediate steps that require multi-
plication, the function first checks if the multiplier is between 1 and 4 and in that
case performs additions instead of invoking BN mul. These shortcuts can be elim-
inated, in order to avoid leaking any information associated with the relative sizes
of the operands (which could potentially facilitate an attack). The early exit step
in the division algorithm should also be eliminated. We point out that these branch
elimination steps can be spared if the base blinding mitigations are assumed to
successfully mask the side-channel information.

We emphasize that in general, a minimal quick-fix approach for handling the security
of a cryptographic implementation is a less recommended approach than a fundamental
revision of the CRT-RSA procedures which should be seriously considered. We propose
such an approach in the paper’s next part.

5.3 Intrinsically BPA-Protected CRT-RSA Implementation — Smooth
CRT-RSA

Our goal here is to outline a CRT-RSA implementation that does not contain conditional
branches. To this end, we need to eliminate modular reductions, divisions, and the con-
ditional ER step from the computation of RSA at all. Our proposed approach, which
we call “Smooth CRT-RSA” achieves this objective, and is therefore an intrinsically
SBPA-protected CRT-RSA implementation.

There are several methods one can use to eliminate the conditional ER step (e.g.,
[11], [20]). The reason why we need to perform the ER step at the end of a Montgomery
multiplication is that the result of the algorithm returns a result that is smaller than
twice the modulus, but not necessarily smaller than the modulus itself. Thus, the result
sometimes needs to be reduced by means of one subtraction of the modulus (hence
called an ER step). However, if the data structures used in an CRT-RSA implementation
can accommodate the possibility of storing values between p and 2p (q and 2q, resp.),
then the ER step can be simply avoided. There are two ways to achieve this:

1. Increasing the size of the data structures by one word.
2. Decreasing the size of p and q by two bits.

Note that if the ER step is eliminated, and if the procedure that implements MMUL
is written in a way that does not introduce superfluous branches, then the base blinding
mitigation is not necessary.

To eliminate the need for modular reductions and divisions in CRT-RSA computa-
tion, we propose to change the CRT-RSA flow, and introduce three new variables H3p,
H3q , and MC2:

H3p = 23k mod p, H3q = 23k mod q, MC2 = q−1 ∗ 2k mod p (5)

where k is defined by 2k = n.
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Input: M (ciphertext)
Input: N (modulus; n=2k bits long)
Input: p (secret prime; k bits long)
Input: q (secret prime; k bits long)
Input: dp (secret CRT exponent for the modulus p)
Input: dq (secret CRT exponent for the modulus q)
Input: MC2 (= q−1 ∗ 2k mod p)
Output: A = Md mod N // d is the RSA private exponent

Pre-computed constants:
H3p = 23k mod p
H3q = 23k mod q

// Procedure: MontExp(A,X, N) = AX2−n(X−1) (mod N)
// (modular exp steps with modular multiplications replaced by MMUL operations)
// Procedure: MontReduce — Montgomery reduction.

Setup:
Conversion into Montgomery Domain:

(1) R1 =MontReduce (M , p) // R1 = M ∗ 2−k mod p

(2) R1 =MMUL (R1, H3p, p) // R1 = M ∗ 2k mod p

(4) R2 =MontReduce (M , q) // R2 = M ∗ 2−k mod q
(5) R2 =MMUL (R2, H3q, q) // R2 = M ∗ 2k mod q

Exponentiations:
(3) M1 =MontExp (R1, dp, p) // M1 = R

dp

1 2−k(dp−1) mod p

(6) M2 =MontExp (R2, dq, q) // M2 = R
dq

2 2−k(dq−1) mod q
Conversion from Montgomery Domain:

(5) M1 =MMUL (M1, 1, p) // M1 = Md mod p

(5) M2 =MMUL (M2, 1, q) // M2 = Md mod q

Recombination with MMUL:
(7) M2 = M2 - M1 //
(8) if(M2 < 0) M2 = M2 + p //
(9) R1 =MMUL(M2, MC2, p) //
(10) R1 = M2 ∗ p //
(11) A = R1 + M1 //
(12) return A //

Fig. 8. Smooth CRT-RSA

These parameters can be easily derived from the traditional Montgomery constants
Hp = 22k mod p, Hq = 22k mod q, and from the CRT parameter C2 = q−1 mod p
which are currently used in OpenSSL for converting the exponentiation base from the
integer to the Montgomery domain. Only one Montgomery multiplication is required
for this derivation:
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H3p = 23k mod p = MMUL(Hp, Hp, p)
H3q = 23k mod q = MMUL(Hq, Hq, q)

MC2 = q−1 ∗ 2k mod p = MMUL(C2, Hp, p)

These computations can be included in the Montgomery initialization phase, and the
new parameters can replace the old ones. Figure 8 illustrates the new proposed smooth
CRT-RSA flow. Interestingly, the Smooth CRT-RSA has a better performance than the
standard CRT-RSA that is implemented in OpenSSL-0.9.8.

6 Conclusions

Our main result in this paper was the unexpected novel SBPA side-channel attack
against the public-key cryptography primitive BEEA that is used for modular inversion.
This started a research path for fully exploring the potential risk of SBPA attacks.

Since deactivating branch prediction units on all general purpose platforms, or dis-
abling multiprocessing capabilities in the OS, is clearly an unattractive mitigation ap-
proach, one conclusion is that cryptographic software that run on general platforms
needs to be (re-)written in an SBPA-aware style. Thus, another focus of our paper was
on a software mitigation methodology for protecting applications against SBPA attacks.
In order to do so, we also highlighted — on top of the central SBPA-enabled BEEA
side-channel attack — some other very obvious OpenSSL code constructs which are
susceptible to SBPA attacks. We then proposed several simple techniques to mitigate
these vulnerabilities, which could be applied to future versions of OpenSSL towards an
SBPA-aware version.

The minimal set of mitigations that were detailed in Section 5.2 have already been
implemented by Intel Corporation’s security experts, and have been provided to the
open source community, in order to facilitate their quick deployment into a new version
of OpenSSL. These modifications carry only a small performance penalty, and are by
now already implemented in the current OpenSSL version, [17].

In addition, we have also im implemented the Smooth RSA proposal from Section
5.3 on top of the minimal set. As expected, Smooth RSA and the minimal set of mit-
igations not only protects OpenSSL 0.9.8a from the SBPA attacks, but also improves
the performance due to the elimination of some operations such as the ER step in the
Montgomery multiplications. The details, including the comparative performance re-
sults, will soon be available in a subsequent paper.

Still, we also point out that the present paper does not claim an exhaustive SBPA side-
channel security analysis with a full proof on corresponding software countermeasures
for OpenSSL. It rather indicates that this task is required, especially since SBPA attacks
potentially threatens every step of the OpenSSL code. However, the present paper made
a major step towards this goal.

Another conclusion of the paper is that the PC-oriented side-channel attack field
is very subtle due to the high MicroArchitectural complexity of today’s processors.
Thus, we expect that new MicroArchitectural attacks will inevitably be discovered in
the future.

We also point out here that Smooth RSA has the important security advantage of
eliminating the ER step at all. Since SBPA has the potential to reveal the entire
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execution flow of the target process, it could be also used for identifying whether or
not a given Montgomery multiplication requires the ER step. Taking [19] into account,
one can realize that this attack, which is based on tracking the ER steps, can be actually
launched against the OpenSSL implementation if the ER steps are not eliminated (even
while OpenSSL is using the FWE algorithm). We also mention that the ER steps can
be identified by other methods, such as cache eviction based spying, and not only using
SBPA. For this reason, we recommend that the ER step is eliminated at all, and suggest
using Smooth RSA to this end. We feel that moving towards the Smooth RSA would
be the best solution to get rid off many ER related attacks and also to avoid new twists
of known and future ones.

Last but not least, we summarize the current situation as follows. Probably the best
defense against current and future MicroArchitectural attacks is to let the cryptographic
software community become aware of the security implications of writing cryptographic
software that is going to be executed on throughput-optimized general purpose pro-
cessors. This will help software be written using a proper side-channel attack aware
methodology. A first step into this direction are the recent changes in OpenSSL fixing
the vulnerabilities pointed out in this paper, [17].
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Abstract. Filter generators are important building blocks of stream ci-
phers and have been studied extensively. Recently, a new attack has been
proposed. In this paper, we analyze this attack using the trace represen-
tation of the output sequence y and we prove that the attack does not
work always as expected. We propose a new algorithm that covers the
cases that the attack cannot be applied. The new attack is as efficient as
the original attack. Finally, trying to motivate the research on the non-
linear complexity of binary sequences, we present a scenario where the
knowledge of the quadratic complexity of a sequence can decrease signif-
icantly the necessary for the attack amount of known keystream bits.

1 Introduction

Stream ciphers are symmetric ciphers where the plaintext is combined with a
pseudorandom bit stream. Most of the designs consist of a generator that pro-
duces the keystream which is added modulo 2 with the plaintext. Stream ciphers
have been the center of interest of the cryptographic society the last few years,
due to the eStream contest organized by the European Network of Excellence
ECRYPT ([3]).

One of the most important building blocks of many stream ciphers is the
filter generator ([6]). The filter generator consists of a linear feedback shift reg-
ister (LFSR) with primitive feedback polynomial and a Boolean function that
filters the state and produces the output sequence y. Filter generators have been
extensively studied and many attacks have been proposed, leading to a variety
of restrictions on the choice of the feedback polynomial and the filter function.
In [1] and [2] you can find a very good overview on the most powerful attacks,
namely the correlation and the algebraic attacks.

Recently, a new efficient attack has been proposed ([9]). This attack discloses

the initial state of the filter generator, when D(d) =
∑d

i=0

(
n
i

)
bits of data
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are available, where n is the size of the LFSR and d is the degree of the fil-
ter function. The new attack requires O(D(d)log2(D(d))3) pre-computation and
O(D(d)) computation complexity for the calculation of the initial state. The at-
tack is based on the fact that when the output bits are expressed as a function
of the initial state, the coefficients of the monomials have a specific form.

The attack does not work when the feedback polynomial of the LFSR is not
factor of the feedback polynomial of the shortest LFSR that produces the same
output sequence y. In that case, the authors propose a modified, less efficient,
version of their attack, where a system of nonlinear equations is solved using the
linearization method.

In this paper, we interpret the results of [9] in terms of the trace representa-
tion of sequence y. Using this approach we show that the modified version of the
attack does not work as expected in [9]. The nonlinear system is not overdefined
and thus the linearization method can not be applied. We propose a new mod-
ified version of the attack to cover the case that the original attack cannot be
applied. The attack has the same complexity as the original attack disproving
the conjecture from [9], that filter generators producing sequences with smaller
linear complexity than the maximum possible can resist their attack.

Finally, we describe a scenario where, given the quadratic complexity of y,
the amount of data needed for the attack decreases. Though very efficient, the
original attack requires amount of known keystream bits equal to the upper
bound of the linear complexity. This amount of data usually is not available,
as it was demonstrated in [10]. We want to stress out that our main goal is to
warm over the research interest on high order nonlinear complexity and motivate
researchers to work in this area, and not to present a specific attack.

The paper is organized as follows. In Section 2, we present the necessary
background and we briefly describe the attack proposed in [9]. In Section 3, we
introduce a different interpretation of the attack and we show that the modified
version of the attack does not work. In Section 4, we present the new modified
version of the attack for the cases that the original attack does not cover. Finally,
in Section 5, we exhibit the role of the high order nonlinear complexity in such
an attack.

2 Preliminaries

Let α be a primitive element of F2n and let Cs be the cyclotomic coset modulo
N = 2n − 1 defined as

Cs = {s, 2s, · · · , 2ns−1s}
where ns is the smallest integer such that s ≡ s2ns mod N . The integer s is the
smallest in the coset Cs and is called the coset leader. The polynomial

hs(z) =
∏

j∈Cs

(z + αj)

is irreducible over F2 of degree ns and ns divides n. Let I be the set of all
coset leaders and I(d) the set of coset leaders whose binary representation has
Hamming weight at most d.
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Consider a periodic binary sequence y = {yt}t≥0 with period N . The length
of the shortest linear feedback shift register (LFSR) that generates y defines the
linear complexity of the sequence y, denoted by LC(y). The feedback polyno-
mial h(z) of the LFSR can be uniquely written as the product of irreducible
polynomials ([5]),

h(z) =
∏

j∈Î

hj(z),

where Î ⊆ I. The linear complexity is given by

LC(y) =
∑

j∈Î

nj .

Sequence y admits the trace representation ([11])

yt =
∑

κ∈I

trnκ
1 (γκακt)

where γκ ∈ F
∗
2nκ , if the coset leader of C−κ belongs to Î and γκ = 0, otherwise.

F
∗
2nκ is the multiplicative group of F2nκ . The function

trn
1 (z) = z + z2 + z4 + · · · + z2n−1

is the trace function and it maps elements of F2n onto the prime subfield F2 ([5]).
In other words the sequence y can be written as the sum of sequences yκ

t =
trnκ

1 (γκακi). Each sequence yκ has linear complexity nκ and period 2n−1
gcd(κ,2n−1) .

Since hκ(ακ) = 0, we have

nκ∑

j=0

hκ
j yκ

j+t = trnκ
1 (hκ(ακ)γκακt) = 0 (1)

where hκ(z) =
∑nκ

i=0 hκ
i zi. When gcd(κ, 2n − 1) = 1, yκ is an m-sequence ([4]).

The LFSR with feedback polynomial the primitive polynomial h−κ(z) gen-
erates the m-sequence yκ

t = trn
1 (ακt0ακt). The initial state Xt0 of the LFSR

determines a different phase t0 of the m-sequence. The phase t0 = 0 is called the
characteristic phase of the m-sequence. We define as

Xc =
(
trn

1 (1), trn
1 (ακ), · · · , trn

1 (ακ(n−1))
)

the characteristic state of the LFSR, that is the initial state corresponding to
the characteristic phase t0 = 0 of the m-sequence. Let Lκ be the n × n state
transition matrix of the LFSR defined as

Lκ =

⎛

⎜
⎜⎜
⎜
⎜
⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
hκ

0 hκ
1 hκ

2 · · · hκ
n−1

⎞

⎟
⎟⎟
⎟
⎟
⎠

.
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Each state can be written as

(Xt0)
T = Lt0

κ · (Xc)T (2)

where Lt0
κ is t0-th power of Lκ and T denotes the transpose of the matrix. That

means that, using Xt0 as initial state the t0 shift from the characteristic phase
of the m-sequence is produced, i.e.,

trn
1 (ακt0ακt) = g · Lt+t0

κ · XT
c = g · Lt

κ · XT
t0 (3)

where g = (1, 0, · · · , 0). It is straightforward to check that
⎛

⎜
⎜⎜
⎝

g
g · Lκ

...
g · Ln−1

κ

⎞

⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎝

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

⎞

⎟
⎟⎟
⎠

.

From (2), between two states Xt0 and Xt1 we have the relationship

(Xt1)
T = Lt1−t0

κ · (Xt0)
T =

⎛

⎜
⎜
⎜
⎝

g
g · Lκ

...
g · Ln−1

κ

⎞

⎟
⎟
⎟
⎠

· Lt1−t0
κ · (Xt0)

T

=

⎛

⎜
⎜
⎜
⎝

ĝ
ĝ · Lκ

...
ĝ · Ln−1

κ

⎞

⎟
⎟
⎟
⎠

· (Xt0)
T (4)

where ĝ = g · Lt1−t0
κ . That is,

Lt1−t0
κ =

⎛

⎜
⎜
⎜
⎝

ĝ
ĝ · Lκ

...
ĝ · Ln−1

κ

⎞

⎟
⎟
⎟
⎠

. (5)

Solving the system of equations (4) we have

ĝ = Xt1 ·
(
(Xt0)T , Lκ · (Xt0)T , · · · , Ln−1

κ · (Xt0)T
)−1

. (6)

A Boolean function f : F
n
2 → F2 can be written in the so–called algebraic

normal form (ANF) as follows

f(z1, . . . , zn) = a0 + a1z1 + · · · + anzn + a1,2z1z2 + · · · + an−1,nzn−1zn

+ · · · + a1,...,nz1 · · · zn.
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xt+n−1 xt+n−2 xt· · ·

� � � �

� � � �� � �

�

�

linear feedback function h

xt+n

filter function f

� � � �
yt

Fig. 1. The block diagram of a filter generator

All coefficients are in F2. The degree of f is defined to be the maximum of the
orders of the product terms appearing in the algebraic normal form with nonzero
coefficients.

A filter generator consists of two parts, namely a LFSR with primitive feed-
back polynomial h and a Boolean function f that filters the state of the LFSR
(Fig. 1). We assume that both of them are publicly known. Let x = {xt}t≥0
be the sequence produced by the LFSR. The sequence x is an m-sequence. The
keystream sequence y = {yt}t≥0 generated by the filter generator is given by

yt = f(xt, · · · , xt+n−1), t ≥ 0.

Let d be the degree of the filter function f . Then, the linear complexity is
upper bounded by

LC(y) ≤ D(d),

where D(d) =
∑d

i=1

(
n
i

)
.

In [9] a new attack against the filter generator is proposed. The goal of the
attack is to retrieve the initial state X = (x0, · · · , xn−1) of the LFSR. The
output of the filter generator at time t is expressed as a function of the initial
state, i.e.

yt = f(xt, · · · , xt+n−1) = ft(x0, · · · , xn−1) =
∑

A

mA · KA,t (7)

where KA,t is the sequence of coefficients of the monomial mA = xa0xa1 · · ·xar−1 ,
and A = {a0, a1, . . . , ar−1} ⊆ {0, 1, . . . , n − 1}. The degree of the monomial mA

is |A| ≤ d.
The attack is based on the observation that the characteristic polynomial p

that generates all the coefficient sequences KA,t, for |A| ≥ 2 can be efficiently
computed with complexity O(D(d) log2(D(d))3). This is the first step of the pre-
computation stage. The degree of the polynomial p is D(d) − n. In the second
step of the pre-computation stage, n linear equations are determined, applying
the recursion defined by p, i.e.
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y∗
t =

D(d)−n∑

i=0

piyt+i, (8)

and from (7) we have

y∗
t =

D(d)−n∑

i=0

pift+i(x0, · · · , xn−1) = r
(1)
t (x0, · · · , xn−1), (9)

where deg(r(1)
t ) ≤ 1, since all the high order terms vanish. This step has com-

plexity roughly n · D(d).
For each new keystream the first n bits of the sequence y∗ are computed

using the recursion (8). For 0 ≤ t ≤ n − 1, the linear system (9) is solved with
complexity less than n3 and the initial state is recovered. The necessary amount
of data for the attack is D(d) bits.

The attack exhibits two problems. First, as it is mentioned in [9], the attack
does not work when r

(1)
0 is the zero function. In that case, a different polynomial

p is chosen, leading to a system of quadratic equations, making the attack less
efficient. The authors in [9] believe that by decreasing the linear complexity of
the sequence y in a certain way the filter generator appears to be more resistant
against their attack. In Section 3, we demonstrate that the modified version of
the attack does not work as expected in [9]. In Section 4, we propose an efficient
attack for the case when r

(1)
0 is the zero function and we disprove the claim on

the reduced linear complexity.
The second problem concerns the amount of data needed for the attack.

Though, the complexity of the attack is low, the amount of data needed is large
(almost equal the linear complexity) and usually not available. This is demon-
strated in [10] where an attack against the WG stream cipher is presented. The
attack is a direct generalization of the above attack against filter generators over
F2n . The attack is more efficient than exhaustive key search, but the required
data exceeds the keystream length allowed by the cipher’s specifications for the
same key and IV pair. In Section 5, we try to motivate the research on high order
nonlinear complexity of sequences. We show that when the quadratic complexity
is small the attack can be improved in terms of the data complexity.

3 The Trace Representation Interpretation

In this section we describe the attack in terms of the trace representation of the
sequence y, i.e.

yt =
∑

κ∈I(d)

trnκ
1 (γκακ(t+k)) (10)

where d is the degree of the filter function f and αk depends on the initial state
of the filter generator.
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Let Î(d) ⊆ I(d) and let p(z) =
∏

κ∈Î(d) hκ(z). The degree of p is deg(p) =
∑

κ∈Î(d) nκ. From (1) and (10) we have

y∗
t =

deg(p)∑

j=0

pjyj+t =
∑

κ∈I(d)

trnκ
1 (p(ακ)γκακ(t+k))

=
∑

κ∈I(d)\Î(d)

trnκ
1 (p(ακ)γκακ(t+k)) +

∑

κ∈Î(d)

trnκ
1 (p(ακ)γκακ(t+k)) =

=
∑

κ∈I(d)\Î(d)

trnκ
1 (p(ακ)γκακ(t+k)) + 0. (11)

In [9] polynomial p is chosen as

p(z) =
∏

2≤j≤d

gj(z)

where gj(z) =
∏

κ∈I,wt(κ)=j hκ(z). That is Î(d) = I(d) \ {1}. Thus, from (11) we
get

y∗
t = trn

1 (p(α)γ1α
(t+k)).

That is, y∗ is a cyclic shift of x, the m-sequence produced by the same LFSR
and initial state as the one used in the under attack filter generator. Solving
system (4) we retrieve the initial state Xt0 , using Xt1 =

(
y∗
0 , · · · , y∗

n−1
)

and
ĝ = r

(1)
0 , where the vector r

(1)
0 is defined in (9). In other words, the problem

of retrieving the initial state has been transformed to the retrieval of the initial
state of the former described LFSR. For details on the attack please refer to [9].

The problem is that the attack does not work when γ1 = 0. The authors in [9]
suggest to replace p by p(z) =

∏
3≤j≤d gj(z). Using the new polynomial p all the

terms of order greater than 2 vanish. From (7), we have

y∗
t =

deg(p)∑

i=0

pift+i(x0, · · · , xn−1) = r
(2)
t (x0, · · · , xn−1) (12)

where deg(r(2)
t ) = 2. The attacker has now to solve a quadratic system. If r

(2)
t

is zero, a new polynomial p(z) =
∏

4≤j≤d gj(z) is chosen, and so on. Generally,

let λ0 be the smaller integer such that p(z) =
∏

λ0+1≤j≤d gj(z) and r
(λ0)
t is a

Boolean function different from the zero function given by

y∗
t =

deg(p)∑

i=0

pift+i(x0, · · · , xn−1) = r
(λ0)
t (x0, · · · , xn−1). (13)

The attacker has to solve the system (13) which has degree λ0. Sequence y has
linear complexity at most D(d) − D(λ0). The authors in [9] believe that this
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decrease of the linear complexity protects the filter generator from their attack,
since the degree λ0, of the system the attacker has to solve, increases.

In order to solve the quadratic system (12) using the linearization method,
as proposed in [9], the system has to be overdefined. That is, each monomial is
treated as a new variable and the system is solved with Gauss elimination given
that we have D(2) linearly independent equations. In what follows we will show
that the system is not overdefined for λ0 ≥ 2.

Sequence y∗ is given by

y∗
t =

∑

κ∈I(2)\{1}
trnκ

1 (p(ακ)γκακ(t+k))

since γ1 = 0. The linear complexity of y∗ equals

LC(y∗) ≤
∑

κ∈I(2)\{1}
nk = D(2) − D(1).

That means that, only LC(y∗) < D(2) linearly independent equations are avail-
able. It is easy to check that the situation gets worse as λ0 increases, as D(λ0)
linearly independent equations will be needed, while D(λ0) − D(λ0 − 1) are
available at most. In Section 4 we present a solution for this problem.

4 Computing the Initial State When γ1 = 0

In this section we present a method for attacking the filter generator when
γ1 = 0. In the previous section we showed that when γ1 �= 0 the computation
of the initial state of the cipher can become equivalent to the evaluation of the
initial state of an LFSR that produces an m-sequence. In what follows, we will
exploit the same idea.

We assume that γ1 = 0. Let s ∈ I(d) be an integer such that gcd(s, N) = 1
and γs �= 0. Let ŝ be the inverse of s, that is ŝs ≡ 1 mod N , and let p(z) =∏

κ∈I(d)\{1,s} hκ(z), where deg(p) = D(d) − 2n. Thus, from (10) we have

y∗
t =

D(d)−2n∑

i=0

piyi+t = trn
1 (p(αs)γsα

skαst). (14)

Sequence y∗ is an m-sequence. Observing n output bits y∗
t , 0 ≤ t ≤ n − 1, a

unique element αδ is defined such that y∗
t = trn

1 (αδαst). This leads to

αδ = αβ · αsk,

where αβ = p(αs)γs. Thus, the initial state αk is given by

k = (δ − β)sφ(N)−1 mod N,

where φ(·) is the Euler’s totient function.
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In other words, it would be easy to retrieve the initial state of the filter gen-
erator if we knew the trace representation of y and we could compute efficiently
elements addition in the extension field F2n . Next we present an algorithm where
only the knowledge of the feedback polynomial and the Boolean function are
known, as in the original attack, i.e. we do not need the knowledge of γs and
p(αs). This proposed attack is as efficient as the original attack for γ1 �= 0. We
will use the trace representation form to explain our reasoning.

Let LFSR1 be the LFSR used by the filter generator and let L1 be its state
transition matrix, and LFSRs be a second LFSR with feedback polynomial
the primitive polynomial h−s(z) and state transition matrix Ls. The LFSRs

produces a phase shift of the m-sequence trn
1 (αskαst), where the phase k is

determined by the initial phase of the LFSRs.
Pick an initial state X(0) for LFSR1. Then, there is a corresponding phase

k0 such that
xt = trn

1 (αk0αt)

and (X(0))T = Lk0
1 (Xc,1)T , where Xc,1 is the characteristic state of LFSR1.

Decimating x by s we get

x∗
t = trn

1 (αk0αst) = trn
1 (αs(ŝk0)αst).

Let Z∗ =
(
x∗

0, x∗
1, · · · , x∗

n−1
)
. LFSRs produces the sequence x∗ and

(Z∗)T = Lŝk0
s (Xc,s)T , (15)

where Xc,s is the characteristic state of LFSRs.
Initializing the filter generator with X(0) we compute from (14) the first n

bits of y∗
0

y∗
0,t = trn

1 (αsβ′
αsk0αst), 0 ≤ t ≤ n − 1,

where αsβ′
= p(αs)γs. Let Z(0) =

(
y∗
0,0, y∗

0,1, · · · , y∗
0,n−1

)
. LFSRs produces the

sequence y∗
0 and

(Z(0))T = Lβ′+k0
s (Xc,s)T . (16)

Let X(1) be the initial state of the filter cipher we want to retrieve. Then,
there is a phase k1 such that (X(1))T = Lk1

1 (Xc,1)T . We compute

y∗
1,t = trn

1 (αsβ′
αsk1αst), 0 ≤ t ≤ n − 1.

Let Z(1) =
(
y∗
1,0, y∗

1,1, · · · , y∗
1,n−1

)
. Then,

(Z(1))T = Lβ′+k1
s (Xc,s)T . (17)

From (16) and (17), it holds,

(Z(1))T = Lk1−k0
s (Z(0))T .
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From (6) we compute the vector ĝ and from (5)

G0 =

⎛

⎜
⎜
⎜
⎝

ĝ
ĝ · Lκ

...
ĝ · Ln−1

κ

⎞

⎟
⎟
⎟
⎠

= Lk1−k0
s .

Let G = Gŝ
0 = L

ŝ(k1−k0)
s . Then, from (15), the state (Z)T = G · (Z∗)T =

Lŝk1
s · Xc,s used as initial state of the LFSRs produces the sequence

y∗
t = trn

1 (αs(ŝk1)αst) = trn
1 (αk1αst).

Decimating y∗ by ŝ we get the k1 phase shift from the characteristic phase of the
m-sequence x produced by the LFSR1, i.e. xt = trn

1 (αk1αt). Thus, the initial
state we want to retrieve is given by

X(1) = (x0, · · · , xn−1) =
(
y∗
0 , y∗

ŝ , · · · , y∗
ŝ(n−1)

)
.

The algorithm is described as follows.

1. Pre-computation. We chose X(0) = (0, 0, · · · , 0, 1).
(a) Compute the polynomial p.
(b) Using X(0) for initial state compute the first n bits of the decimated by

s output of LFSR1 and formulate the vector Z∗ =
(
x∗

0, x∗
1, · · · , x∗

n−1
)
.

(c) Clock the filter generator (D(d) − n) times using X(0) for initial state
and compute from (14) the vector Z(0) =

(
y∗
0,0, y∗

0,1, · · · , y∗
0,n−1

)
.

2. Computation.
(a) Observe (D(d)−n) output bits of the filter cipher and compute from (14)

the vector Z(1) =
(
y∗
1,0, y∗

1,1, · · · , y∗
1,n−1

)
.

(b) Solve the system (6) and compute G0.
(c) Compute G = Gŝ

0.
(d) Compute (Z)T = G · (Z∗)T .
(e) Using Z for initial state, compute the first n bits of the decimated by ŝ

output y∗ of LFSRs. The initial vector we are looking for is given by
X(1) =

(
y∗
0 , y

∗
ŝ , · · · , y∗

ŝ(n−1)

)
.

The complexity of each step is summarized as follows.

1. Pre-computation.
(a) From [9] this step requires O(D(d)log2(D(d))3) complexity.
(b) If s is small then we can just run the LFSR1 and decimate it. Otherwise,

we compute Ls
1, using the square-and-multiply method for exponentiation.

Then, the n bits of the decimated sequence are given by

x∗
t = (1, 0, 0, 0, 0) · (Ls

1)
t · (0, 0, · · · , 0, 1)T .

The complexity is at most O(n3).
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(c) The computation of y∗
0,t, 0 ≤ t ≤ n − 1, if it is done in parallel, has

complexity O(D(d) − n).
2. Computation.

(a) The computation of y∗
1,t, 0 ≤ t ≤ n − 1, if it is done in parallel, has

complexity O(D(d) − n).
(b) For solving the system and computing G0 matrix, the complexity is ap-

proximately O(n3).
(c) For computing the ŝ power of G0 we need approximately O(log2(ŝ)n2).
(d) For computing Z the complexity is approximately O(n3).
(e) Using similar argumentation with the step (b) of the Pre-computation

stage, the complexity is O(n3) at most.

In conclusion, both in the precomputation stage and the computation stage
the calculation of the n bits of ŷ(0) and ŷ(1) respectively, is dominant, and the
complexity of the attack is O(D(d) − n). The data complexity is O(D(d) − n)
bits. All the other steps include inversions and multiplications of n × n binary
matrices which is relatively costless. The attack has the same complexity as the
one in [9] for γ1 �= 0. In Appendix, we propose an alternative attack which is
less efficient.

Next we present a simple example to illustrate the proposed algorithm.

Example 1. Let h1(z) = 1 + z2 + z5 be a primitive polynomial and let α ∈ F25

such that h1(α) = 0. The LFSR1 has feedback the polynomial h−1(z) = 1+z3+
z5 and produces an m-sequence. The state of LFSR1 is filtered by the balanced
Boolean function f(x0, x1, x2, x3, x4) = x1 +x3 +x0x2 +x0x3 +x1x2 +x2x4. The
output sequence y of the filter generator is balanced with period N = 25−1 = 31
and linear complexity LC(y) ≤ D(2) = 15.

Following the attack proposed in [9] we have p(z) = g2(z) = h3(z)h5(z) = 1+
z+z6+z7+z10, where h3(z) = 1+z2+z3+z4+z5 and h5(z) = 1+z+z2+z4+z5.
From (9), we get r

(1)
t (z) = 0, for all t ≥ 0. Thus, the attack cannot be applied.

Next, we will follow our attack. Let s = 3. Then, p(z) = h5(z) = 1 + z + z2 +
z4 + z5. We use X(0) = (0, 0, 0, 0, 1) as initial state and we decimate the output
of LFSR1 by s = 3. Then,

Z∗ = (0, 0, 0, 1, 0) .

Using X(0) also as the initial state of the filter generator we produce D(2)−n =
15 − 5 = 10 output bits and from (14) we compute

Z(0) = (0, 1, 0, 1, 0) .

The attack requires D(2) − n = 10 bits of y to be observed. Let

(y0, · · · , y9) = (0, 0, 1, 0, 1, 0, 1, 0, 1, 0) .

From (14) and the observed bits of y we compute

Z(1) = (0, 0, 1, 0, 1) .
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From (6) we compute ĝ we get

ĝ = Z(1) ·
(
(Z(0))T , L3 · (Z(0))T , · · · , L4

3 · (Z(0))T
)−1

= (0, 1, 1, 1, 1) ,

where L3 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

. Thus, G0 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

.

The inverse of s is ŝ = 21 and G = G21
0 =

⎛

⎜
⎜⎜
⎜
⎝

0 1 0 1 0
0 0 1 0 1
1 0 1 0 1
1 1 1 0 1
1 1 0 0 1

⎞

⎟
⎟⎟
⎟
⎠

.

The state Z = G · (0, 0, 0, 1, 0) = (1, 0, 0, 0, 0). Since, ŝ = 21 is rather big, we
compute

(L3)21 = L3 · (L3)4 · (L3)16 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 1 1 0
0 1 0 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Thus, the state we are looking is given by X(1) = (x0, x1, x2, x3, x4), where

xt = (1, 0, 0, 0, 0) · (L21
3 )t (1, 0, 0, 0, 0)T .

We compute X(1) = (1, 0, 0, 0, 0).

5 The Role of High Order Complexity

In this section we present an attack scenario that requires fewer keystream bits.
The price we must pay is some additional pre-computation complexity. The
main objective of this section is to motivate the research on high order nonlinear
complexity of binary sequences.

Definition 1. ([7], [8]) The length of the shortest feedback shift register (FSR)
having a feedback function of degree at most k that generates y defines the k-th
order nonlinearity of sequence y.

For k = 1 we have the linear complexity of the sequence, and for k = 2 the
quadratic span.

In Section 3, we showed that the attack is based on the transformation of the
state recovery problem to a much easier problem as the one of the recovery of
the initial state of the LFSR that produces an m-sequence. Next we describe a
generalization of the attack. We follow the notation of Section 3.
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Assume that Î(d) = I(d) \ I(d′), where d′ < d and that γκ �= 0, for all
κ ∈ I(d′). For d′ = 1 we have the attack described in [9]. From (11), it holds

y∗
t =

∑

κ∈I(d′)

trnκ
1 (p(ακ)γκακ(t+k))

where p(z) =
∏

κ∈Î(d) hκ(z) and deg(p) = D(d) − D(d′).

Following the same reasoning as before, we pre-compute the functions r
(d′)
t

y∗
t =

D(d)−D(d′)∑

i=0

pift+i(x0, · · · , xn−1) = r
(d′)
t (x0, · · · , xn−1). (18)

Since γκ �= 0, for all κ ∈ I(d′), the linear complexity of y∗ is D(d′) and the sys-
tem (18) consists of D(d′) linearly independent equations. Using the lineariza-
tion method we can solve (18) with complexity D(d′)2.7. We need D(d′) bits of
y∗. The computation of each one of these bits requires the knowledge of some
(D(d) − D(d′) + 1) bits of the output sequence y, resulting to an overall data
complexity O(D(d)).

Suppose that the quadratic span QS(y∗) of y∗ is known, as well as the
quadratic feedback function q of the shortest FSR that generates the sequence
y∗. That means that, if we know QS(y∗) bits of the sequence y∗, we can use
it as the initial state of the FSR and produce the whole sequence. So, when
the polynomial q is known, let’s say as part of the pre-computation, we can use
QS(y∗) bits of y∗ to compute the D(d′) bits needed for the attack. Thus, the
data complexity reduces to (D(d) − D(d′) + QS(y∗)).

In the above scenario, a trade-off between the computational and the data
complexity appears. Increasing the value d′ we increase the attack complexity
O((D(d′))2.7), while we decrease the data complexity to

O (D(d) − D(d′) + QS(y∗)) .

In the above analysis we assume that the quadratic span for most of the sequences
with the same period is almost the same, as it happens with the linear complexity.
It is straightforward to see that we can replace quadratic span with any of the
k-order nonlinear complexities we can compute. Unfortunately, there is not an
efficient algorithm for computing the high order nonlinearity of a binary sequence
or a analysis on the expected value of the k-order nonlinear complexity of a
random periodic sequence ([7]). We hope that the attack we just described will
motivate researchers to work in the field.

6 Conclusion

In this paper, we analyzed the attack against the filter generator proposed in [9].
Using trace representation of the output sequence y we proved that the attack
does not work always as expected. We proposed a new algorithm for the cases
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that the original attack does not cover which is as efficient as the original attack.
The main problem of all the former mentioned attacks, original and modified
version, is the high data complexity. We showed the significance of nonlinear
complexity of binary sequences in such an attack. We presented a scenario where
the knowledge of the quadratic complexity can decrease significantly the data
complexity. It remains an open problem the computation of k-order nonlinear
complexity of a given binary sequence, which we believe is a very good direction
for further research.
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A Appendix

In this Appendix we present a less efficient attack scenario for the case when
γ1 = 0. We follow the notation of Section 4.

Let ŷ be the decimation of y∗ by ŝ. Then, from (14) we have

ŷt = y∗
ŝt = trn

1 (p(αs)γsα
skαt) = trn

1 (αβαskαt) (19)

where αβ = p(αs)γs. The sequence ŷ is produced by the linear feedback shift
register LFSR1 used by the filter generator.

http://www.ecrypt.eu.org/stream/
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Pick an initial state X(0) and using the output of the filter generator compute
from (19) the sequence ŷ(0). Then, there is a shift k0 such that

ŷ
(0)
t = trn

1 (αβ+sk0αt),

and X(0) = Lk0
1 (Xc,1)T , where Xc,1 is the characteristic state of LFSR1 and

L1 is the state transition matrix.
Let Z(0) =

(
ŷ
(0)
0 , ŷ

(0)
1 , · · · , ŷ

(0)
n−1

)
. Since LFSR1 produces the sequence ŷ(0),

we have
(Z(0))T = Lβ+sk0

1 (Xc,1)T . (20)

Let X(1) be the initial state of the filter generator that we want to disclose.
Then, again from (19) we compute sequence ŷ(1), i.e.

ŷ
(1)
t = trn

1 (αβ+sk1αt),

where X(1) = Lk1
1 (Xc,1)T . Let Z(1) =

(
ŷ
(1)
0 , ŷ

(1)
1 , · · · , ŷ

(1)
n−1

)
, then

(Z(1))T = Lβ+sk1
1 (Xc,1)T . (21)

From (20) and (21), it holds

(Z(1))T = L
s(k1−k0)
1 (Z(0))T .

From (6) we compute the vector ĝ and from (5)

G0 =

⎛

⎜
⎜
⎜
⎝

ĝ
ĝ · L1

...
ĝ · Ln−1

1

⎞

⎟
⎟
⎟
⎠

= L
s(k1−k0)
1 .

Let G = Gŝ
0 = Lk1−k0

1 . Then, the initial state X(1) is given by

G · (X(0))T = Lk1−k0
1 · Lk0

1 · (Xc,1)T = (X(1))T .

The algorithm is described as follows.

1. Pre-computation. We chose X(0) = (0, 0, · · · , 0, 1). Generally it is conve-
nient to chose an initial state with Hamming weight one.
(a) Compute the polynomial p.
(b) Clock the filter generator D(d) − 2n + ŝ(n − 1) times using X(0) as

input. From (19) compute n bits of ŷ(0) and formulate the vector Z(0) =(
ŷ
(0)
0 , · · · , ŷ

(0)
n−1

)
.

2. Computation.
(a) Observe D(d) − 2n + ŝ(n − 1) output bits of the filter cipher. From (19)

compute n bits of ŷ(1) and formulate the vector Z(1) =
(
ŷ
(1)
0 , · · · , ŷ

(1)
n−1

)
.

(b) Solve the system (6) and compute G0.
(c) Compute G = Gŝ

0.
(d) Output the last column of G.
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Next we give an estimation of the complexity.

1. Pre-computation.
(a) From [9] this step requires O(D(d)log2(D(d))3) computational complex-

ity.
(b) The computation of ŷ

(0)
t , 0 ≤ t ≤ n − 1, if it is done in parallel has

complexity O(D(d) − 2n + ŝ(n − 1)).
2. Computation.

(a) The computation of ŷ
(1)
t , 0 ≤ t ≤ n − 1, if it is done in parallel has

complexity O(D(d) − 2n + ŝ(n − 1)).
(b) For solving the system (6) and computing the n × n matrix G0, the

complexity is approximately O(n3).
(c) For computing the ŝ power of G0, we use the square-and-multiply method,

i.e. we first compute the powers of two G2i

0 , 1 ≤ i ≤ n − 1, and then, if
ŝ =

∑n−1
i=0 ŝi2i, ŝi ∈ F2, Gŝ

0 =
∏n−1

i=0 Gŝi2i

0 . The complexity of this step
is approximately O(log2(ŝ)n2).

(d) The last step is for free for the specific choice of X(0).

Both in the pre-computation stage and the computation stage the calculation
of the n bits of ŷ(0) and ŷ(1) respectively, is dominant, rising the complexity of
the attack to O(D(d)− 2n+ ŝ(n− 1)). All the other steps are relatively costless.
The data complexity is O(D(d) − 2n + ŝ(n − 1)).

Note 1. The same attack can be applied by first decimating y by ŝ. Then,

y∗
t = yŝt =

∑

κ∈I(d)

trnκ
1 (γκακt0ακŝt). (22)

We define the subset of coset leaders

Iŝ = {κ̂|κ̂ = 2j · κ · ŝ mod N, κ ∈ I(d), κ̂ ∈ I}.

It is easy to see that 1 ∈ Iŝ. Let p(z) =
∏

κ̂∈Iŝ\{1} hκ̂(z). Applying the recursion
p, from (22) we have,

ŷt = trn
1 (p(γs) · αst0αt).

This approach requires (D(n) − 2n)ŝ + n − 1 bits of data.
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Abstract. Some cryptographical applications use pseudorandom seque-
nces and require that the sequences are secure in the sense that they can-
not be recovered by only knowing a small amount of consecutive terms.
Such sequences should therefore have a large linear complexity and also
a large k-error linear complexity. Efficient algorithms for computing the
k-error linear complexity of a sequence only exist for sequences of period
equal to a power of the characteristic of the field. It is therefore useful to
find a general and efficient algorithm to compute a good approximation
of the k-error linear complexity. We show that the Berlekamp-Massey
Algorithm, which computes the linear complexity of a sequence, can be
adapted to approximate the k-error linear complexity profile for a gen-
eral sequence over a finite field. While the complexity of this algorithm
is still exponential, it is considerably more efficient than the exhaustive
search.

Keywords: pseudorandom sequences, stream ciphers, linear complexity,
k-error linear complexity.

1 Introduction

The k-error linear complexity of a sequence is a generalisation of the notion of
linear complexity. While the linear complexity of a sequence is defined as the
length of the smallest linear recurrence relation which generates that sequence,
the k-error linear complexity is the length of the smallest linear recurrence re-
lation which generates a sequence which differs from the original sequence in at
most k positions.

When designing a stream cipher, the keystream sequence has to have a large
linear complexity. Using the Berlekamp-Massey Algorithm, a sequence can be
efficiently recovered by knowing a number of consecutive terms equal to twice its
linear complexity. Sequences with low linear complexity would therefore be vul-
nerable to known plaintext attacks. Similarly, sequences with low k-error linear
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complexity for small values of k could also be vulnerable if the corresponding
linear recurrence relation was found.

An exact algorithm to compute the k-error linear complexity only exists for
periodic sequences over a finite field GF (pm) and with period a power of p, p
being prime and m ≥ 1 (see Stamp and Martin [10], Lauder and Paterson [5] for
p = 2 and Kaida, Uehara and Imamura [4] for an arbitrary p). These algorithms
are based on the algorithms of Games and Chan [3] and Ding, Xiao, Shan [2] for
computing the linear complexity of such sequences, and they work only when a
full period of the sequence is known, i.e. the whole sequence is known, which is
not the case in cryptanalysis applications.

We propose adapting the Berlekamp-MasseyAlgorithm (Berlekamp [1], Massey
[7]) which computes the linear complexity, in order to approximate the k-error
linear complexity profile for a general sequence over a finite field. The main idea is
to devise a heuristic algorithm which explores only some of all the possible error
patterns. The choice of the positions of the errors is guided by the steps of the
Berlekamp-Massey Algorithm in which the complexity is increased.

While the proposed algorithm has an exponential complexity, the base of the
exponential function is smaller than for an exhaustive search; moreover, the base
for the proposed algorithm is independent of the size of the field, while for an
exhaustive search it increases with the size of the field.

In this paper we consider mainly binary sequences but the proposed algorithm
can be extended to arbitrary finite fields.

2 Background

Definition 1. Given an infinite sequence s = s0, s1, . . . (or a finite sequence
s = s0, s1, . . . , st−1 ) with elements in a field K, we say that s is a linear recur-
rent sequence if it satisfies a relation of the form sj +cL−1sj−1+. . .+c1sj−L+1+
c0sj−L = 0 for all j = L, L+1, . . . (or for all j = L, L+1, . . . t−1, respectively),
where c0, c1, . . . , cL−1 ∈ K are constants. The associated characteristic polyno-
mial is C(X) = XL + cL−1X

L−1 + . . . + c1X + c0. If L is minimal for the given
sequence, we call L the linear complexity of s, denoted L(s).

The notion of linear complexity has been generalised to k-error linear complexity
by Stamp and Martin [10] (see also Ding, Xiao, Shan [2]). In the following wH(s)
denotes the Hamming weight i.e. the number of non-zero terms of s.

Definition 2. For a given infinite sequence s = s0, s1, . . . of period N , with
elements in a field K and for a fixed integer k, 0 ≤ k ≤ wH((s0, . . . , sN−1)), the
k-error linear complexity of the sequence s is defined as

Lk(s)=min{L(s+e)| e is a sequence of period N over K, wH((e0, e1, . . . , eN−1)) ≤ k}

For a given finite sequence s = s0, s1, . . . , st−1 with elements in a field K and for
a fixed integer k, 0 ≤ k ≤ wH(s), the k-error linear complexity of the sequence
s is defined as Lk(s) = min{L(s + e)|e ∈ Kt, wH(e) ≤ k}. The sequences e are
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called error sequences or error patterns. The k-error linear complexity profile
of the sequence is defined as being the set of pairs (k, Lk(s)), for all k with
0 ≤ k ≤ wH(s).

Property 1. Given a (finite or infinite) sequence s with elements in a finite field
GF (q), we have Li(s) ≥ Lj(s), for all i < j.

The Berlekamp-Massey Algorithm ([1],[7]) computes the characteristic polyno-
mial and the linear complexity of a sequence over any field. It is iteratively pro-
cessing each term of a finite sequence s0, s1, . . . , st−1, adjusting the characteristic
polynomial when necessary. At each step n the current minimal characteristic
polynomial C(n)(X) generates the n sequence terms s0, s1, . . . , sn−1 processed
so far. In addition, the last characteristic polynomial C(m)(X) of degree strictly
smaller than the degree of C(n)(X) is also stored. We denote L(i) = deg(C(i)).
The discrepancy d(n)

d(n) = sn +
L(n)−1∑

i=0

c
(n)
i si+n−L(n) (1)

is the difference between the term which is expected using the current charac-
teristic polynomial and the actual term sn which is currently processed. Three
possible cases are identified:

1. If d(n) �= 0 then sn cannot be generated using C(n)(X) :
a) If 2L(n) > n then the new characteristic polynomial is computed as

C(n+1)(X) ← C(n)(X) − d(n)

d(m) · X(m−L(m))−(n−L(n)) · C(m)(X) and it has
the same degree as the previous one;

b) If 2L(n) ≤ n then the new characteristic polynomial is computed as
C(n+1)(X) ← X(n−L(n))−(m−L(m)) · C(n)(X) − d(n)

d(m) · C(m)(X) and it has
a higher degree than the previous one, namely L(n+1) = n + 1 − L(n); m
is updated to n.

2. If d(n) = 0 then sn can be generated using C(n)(X), so the characteristic
polynomial stays unchanged C(n+1)(X) = C(n)(X).

We initialise C(i)(X) ← 1 for i = 0, . . . , j, C(j+1)(X) ← Xj+1 and m ← j,
where sj is the first non-zero term of the sequence. At the end of the algo-
rithm, L(t) is the linear complexity of the sequence and C(t)(X) is a minimal
characteristic polynomial (which is unique if 2L(t) ≤ t, otherwise it may not be
unique).

3 The Modified Berlekamp-Massey Algorithm

Determining the k-error linear complexity of a finite binary sequence of length
t by an exhaustive search approach would mean investigating all the

∑k
i=0

(
t
i

)

patterns of up to k errors and computing the linear complexity of each of the
sequences obtained by adding these error patterns to the original sequence. Some
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computational savings can be made by taking advantage of the incremental
nature of the Berlekamp-Massey Algorithm; for error patterns which coincide
on the first say i positions, reuse the computations made on the first i terms
of the sequence. We implemented this more efficient version of an exhaustive
search for the binary case and used it as a reference (we denote this algorithm
the Efficient Exhaustive Search Algorithm).

A heuristic approach would only explore some of all the possible error pat-
terns. Our proposed heuristic will use the Berlekamp-Massey Algorithm to choose
these patterns. Namely, during the algorithm, only the case when the discrepancy
d(n) �= 0 and 2L(n) ≤ n (case (1b) in Section 2) yields an increase in the cur-
rent complexity of the sequence. It seems therefore natural to concentrate on what
would happen if the current term of the sequence, which creates this increase in
complexity, would be changed in such a way as to make the discrepancy zero, and
therefore make an increase in complexity unnecessary. If we made these changes to
the sequence early in the algorithm, we would soon run out of the k allowed errors,
and we would not be able to explore the effect of errors on later terms of the se-
quence. Whenever case (1b) occurs in the algorithm we do therefore consider both
possibilities: changing the current term of the sequence, or not changing it, and
we continue exploring both branches. A tree of recursive calls is thus obtained.

6,2

12,5 8,2

L_0=8 13,5 15,7 9,2

L_1=9 14,5

L_2=10 L_3=5

L_1=9 L_2=7 L_2=8 14,2

L_3=13 15,2

L_4=14 L_5=2

Fig. 1. Example of the Modified
Berlekamp-Massey Algorithm tree of
error and no-error recursive calls for
the sequence s = 0110111101110101

Our approach is not guaranteed to give
the exact result for the k-error linear
complexity, as the error pattern that de-
creases the complexity the most may well
not have the errors in those positions
suggested by the Berlekamp-Massey Al-
gorithm. Since we investigate only some
of all the possible error patterns, our re-
sults will always be larger or equal to the
optimum ones. We investigate experimen-
tally in Section 4 how close the approxi-
mation is to the actual k-error complexity.
Unfortunately we were unable to prove a
theoretical bound on the approximation
quality.

We firstly illustrate our algorithm with
an example:

Example 1. Applying the Berlekamp-Massey Algorithm to s=0110111101110101
(length 16), the degree of the intermediate characteristic polynomials changes
at positions 6 and 12 (ignoring the initial change from degree 0). The linear
complexity is 8 and the characteristic polynomial C(X) = X8 +X6 +X5+X4 +
X + 1.

Figure 1 shows the tree of recursive calls for the MBM Algorithm. The internal
nodes show the index of the element of the sequence currently processed and the
current linear complexity. The left child of each internal node corresponds to not
forcing an error and the right child corresponds to introducing the error. The
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leaves in the tree show the final result on each path in the tree: the number of
errors which were introduced and the corresponding k-error linear complexity.
In our example the first change of complexity happens when s6 is processed. The
error sequence can be built using a bottom-up technique. For example, for the
3-error linear complexity, the errors will be at indices 14,13 and 12, so the error
sequence is 0000000000001110.

By taking the minimum value of the linear complexity for each number of errors,
the results in the tree in Figure 1 give an incomplete approximate k-error linear
complexity profile as being {(0, 8), (1, 9), (2, 7), (3, 5), (5, 2)}. Applying Property 1
in Section 2 and using the fact that LwH(s)(s) = 0 the full approximate k-error lin-
ear complexity profile is found:{(0, 8), (1, 8), (2, 7), (3, 5), (4, 5), (5, 2), (6, 2), (7, 2),
(8, 2), (9, 2), (10, 2), (11, 0)}. The exact k-error linear complexity profile obtained
by an exhaustive search algorithm is: {(0, 8), (1, 7), (2, 6), (3, 4), (4, 2), (5, 1), (6, 1),
(7, 1), (8, 1), (9, 1), (10, 1), (11, 0)}.

We suppose that the input sequence has at least one non-zero element otherwise
calculating the k-error linear complexity would be immediate since Lk(0) = 0,
for all k ≥ 0, where 0 is an all-zero sequence of any length.

In practice we might be interested in the k-error complexities only for small
values of k, say a certain percentage of the length of the sequence, so we introduce
an extra parameter, kMax (default value wH(s)) in the algorithm and we compute
the truncated k-error linear complexity profile {(i, Li(s))|0 ≤ i ≤ kMax}.

One might also be interested in the minimum number of errors needed to
achieve a linear complexity below a certain set value LMax (see Sălăgean [9]).
This again would make some of the recursive calls unnecessary, when the current
complexity is already equal to or below LMax. The default value for LMax is t.
In this case the algorithm will return the profile {(i, max {Li(s), LMax})|0 ≤ i ≤
kMax}.

We implemented the algorithm in Algorithms 1. and 2. based on a recursive
version of the Berlekamp-Massey Algorithm. Two new variables are needed to
accommodate the current number of errors, k and the current error pattern, e.
We denote the k-error linear complexity profile as sol and we define each element
as a collection of three components solk = {sol Lk, sol Ck(X), sol errk}, for k =
0, 1, . . . , max {kMax, wH(s) − 1}, where sol Lk is the k-error linear complexity,
sol Ck(X) is the characteristic polynomial and sol errk is the error sequence
corresponding to the k-error linear complexity.

There are some immediate improvements that can be performed on the Modi-
fied Berlekamp-Massey Algorithm. First of all the stop condition can be adjusted.
Some of the paths taken by the recursion calls might get to a k-error linear com-
plexity which is bigger or equal to the currently stored solution (sol Lk) so they
can be abandoned. Secondly, the currently stored k-error linear complexity pro-
file can be maintained whenever a new solution is found, using Property 1 in
Section 2. Finally, we can combine iteration and recursion in order to minimize
the stack size.
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Algorithm 1. Recursive Modified Berlekamp-Massey Algorithm
1: Input: A finite non-zero sequence s = s0, s1, . . . , st−1; kMax; LMax

2: Output: The approximate k-error linear complexity profile, sol
3: v ← max(kMax, wH(s) − 1)
4: for i = 0, 1, . . . , v do
5: soli ← {t, Xt, (0, 0, . . . , 0

︸ ︷︷ ︸
t times

)}

6: end for
7: k ← 0
8: e = (0, 0, . . . , 0

︸ ︷︷ ︸
t times

)

9: n ← 0
10: while sn = 0 and n < t − 1 do � go over the initial zeros
11: n ← n + 1
12: end while� Initialize the details corresponding to ’last degree change’ position m
13: m ← n
14: Cm(X) ← 1
15: dm ← sn

16: n ← n + 1
17: Cn(X) ← Xn � Initialize the details corresponding to current position n
18: call mbmR(sol,m, Cm(X), dm, Cn(X), n, k, e)
19: return sol

3.1 Algorithm Analysis

The correctness of the linear complexity and characteristic polynomial for each
number of errors k and the corresponding error sequence stored in the solution
array at the end of the algorithm, results from the way the algorithm was built
and from the correctness of the Berlekamp-Massey Algorithm (Massey [7]).

For analysing the complexity of the algorithms we will use the trees described
in Section 3 and estimate their number of nodes using the following Lemma:

Lemma 1. A binary tree of depth n and with at most k right branches on any
path from the root to a leaf has a maximum of

∑k
i=0

(
n+1
i+1

)
vertices.

Proof. We associate to each node a description of the path from the root to that
node, i.e. a sequence over the alphabet {L, R}, where L signifies a left branch and
R a right branch. The number of nodes will therefore be equal to the number
of sequences of lengths between 0 and n, each sequence containing at most k
occurrences of R. For any fixed number i of R’s we have

n∑

m=i

(
m

i

)
=

(
n + 1
i + 1

)

such sequences, so the total for all i from 0 to k will be

k∑

i=0

(
n + 1
i + 1

)
.
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Algorithm 2. The mbmR procedure
1: procedure mbmR(sol, m, Cm(X), dm, Cn(X), n, k, e)
2: if (n = t) or (k > kMax) or (deg(Cn(X)) ≤ LMax) then
3: if ((n = t) and (sol Lk > deg(Cn(X))) and k ≤ kMax then
4: solk ← {deg(Cn(X)), Cn(X), e}
5: end if
6: else
7: dn ← (s + e)n +

∑deg(Cn(X))−1
i=0 cn · (s + e)i+n−deg(Cn(X))

8: if dn �= 0 then
9: if 2 · deg(Cn(X)) > n then � (1a) the complexity does not change

10: Cn(X) ← Cn(X) − dn
dm

· X(m−deg(Cm(X)))−(n−deg(Cn(X))) · Cm(X)
11: mbmR(sol,m, Cm(X), dm, Cn(X), n + 1, k, e)
12: else � (1b) the complexity does change
13: T (X) ← Cn(X)
14: Cn(X) ← X(n−deg(Cn(X)))−(m−deg(Cm(X))) · Cn(X) − dn

dm
· Cm(X)

15: mbmR(sol,n, T (X), dn, Cn(X), n + 1, k, e)
16: if en = 0 then
17: mbmR(sol,m, Cm(X), dm, Cn(X),n+1, k + 1, (e − dnIn))
18: end if
19: end if
20: else � (2) the current characteristic polynomial does not change
21: mbmR(sol,m, Cm(X), dm, Cn(X), n + 1, k, e)
22: end if
23: end if
24: end procedure

There is no closed form for sums of the form
∑k

i=0

(
n
i

)
, so we will use bounds:

Lemma 2. The following bound stands

k∑

i=0

(
n

i

)
≤

{
2
(
n
k

)
, if k ≤

⌊
n+1

3

⌋
,(

k −
⌊

n+1
3

⌋
+ 2

) (
n
k

)
, if

⌊
n+1

3

⌋
< k ≤

⌊
n−1

2

⌋

Proof. The first case follows by induction on k, using the fact that
(
n
k

)
=

(
n

k−1

)
·

n−k+1
k for all n and k. Also n−k+1

k ≥ 2 if k ≤ �(n + 1)/3�. The remaining
inequalities follow from the first using elementary properties of the binomial
coefficients.

We will approximate binomial coefficients using the following (see [6, Lemma 7,
Chapter 10]) (

n

k

)
≈ c

1
√

nα(1 − α)

(
1

αα(1 − α)1−α

)n

(2)

where 0 < k < n, α = k/n and c is a constant, 1/
√

8 ≤ c ≤ 1/
√

2π.
When assessing exponential time complexities of algorithms we will also use

the fact that for any a > 1 and i > 0 we have nian ∈ O((a + ε)n) with ε > 0 an
arbitrarily small constant.

We are now ready to estimate the complexity of the algorithms presented.
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Theorem 1. The worst case time complexity of the Efficient Exhaustive Search
Algorithm for sequences of length t and number of errors at most kMax = vt
with 0 < v < 1/3 is O(

√
tλt) where λ = 1

vv(1−v)1−v . This can also be expressed
as O((λ + ε)t) with ε > 0 an arbitrarily small constant. For a typical value
of v = 0.1 (i.e. errors in at most 10% of the positions) the time complexity is
O(

√
t1.384145t).

Proof. The Efficient Exhaustive Search Algorithm will construct a tree of depth
t and at most kMax right branches on any path from the root to a leaf. By
Lemma 1, this tree will have at most

∑kMax

i=0

(
t+1
i+1

)
nodes. So the number of

nodes is bounded by 2
(

t+1
kMax+1

)
, by Lemma 2. In any node we compute a dis-

crepancy and possibly adjust the characteristic polynomial, so there are O(t)
computational steps. Therefore the complexity is O(t

(
t+1

kMax+1

)
).

Using (2) we obtain the following approximation:

2t

(
t + 1

kMax + 1

)
= 2

t(t + 1)
kMax + 1

(
t

kMax

)
=

= 2
t(t + 1)
vt + 1

(
t

vt

)

≈ 2c
t(t + 1)
vt + 1

1
√

tv(1 − v)

(
1

vv(1 − v)1−v

)t

≈ 2c

v
√

v(1 − v)

√
t

(
1

vv(1 − v)1−v

)t

which is O(
√

tλt) where λ = 1
vv(1−v)1−v .

For the Modified Berlekamp Massey Algorithm it is harder to estimate the depth
of the tree, as the number of terms processed in between two decision points will
vary depending on the particular sequence. We will assume that an average
of u terms are processed between two decision points, i.e. between two points
where the Berlekamp-Massey algorithm would prescribe an increase in the cur-
rent complexity of the sequence. In [8, Chapter 4] it is shown that for random
binary sequences the average number of bits that have to be processed between
two changes in complexity is 4 and the change in complexity has an average
of 2. While the sequences used in the cryptographic applications are not truly
random, using a value of u = 4 for the average number of terms between two
changes of complexity seems reasonable.

Theorem 2. The worst case time complexity of the Modified Berlekamp Massey
Algorithm for sequences of length t, an average of u terms of the sequence
processed between two changes in complexity, and a number of errors at most
kMax = vt with 0 < v < 1

u is
⎧
⎪⎪⎨

⎪⎪⎩

O(
√

tλt
1) if v < 1

3u where λ1 = 1
uvv(1−uv)

1
u

−v
,

O(t
√

tλt
1) if 1

3u ≤ v < 1
2u where λ1 = 1

uvv(1−uv)
1
u

−v
,

O(tλt
2) if 1

2u ≤ v ≤ 1
u where λ2 = u

√
2.
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In all cases the complexity can also be written as O((λi + ε)t) where ε > 0
is an arbitrarily small constant. For a typical value of v = 0.1 (i.e. errors in at
most 10% of positions) and u = 4 the complexity is O(t

√
t1.189208t).

Proof. Since u is the number of terms between two decision points and t is the
total number of terms, the depth of the tree will be t/u. We bound the number of
vertices in the tree by

∑kMax

i=0

( t
u +1
i+1

)
, using Lemma 1. When the number of right

branches on any path, kMax, is at most half the depth of the tree, by applying
the first or the second bound in Lemma 2 (depending on whether kMax is smaller
or greater than a third of t/u), followed by the estimation (2), we obtain the
first two computational complexities O of the Theorem in a similar way as in
the proof of Theorem 1.

When the number of right branches allowed in the tree approaches the depth of
the tree, i.e. kMax approaches t/u, we will bound the number of nodes by 2

t
u +1−1

(the number of nodes in a complete binary tree of depth t/u). Combining this
with O(t) operations in each node gives the third O of the theorem.

The proposed algorithm has the advantage that even when the field has more
than two elements, there are still only two choices that are investigated: intro-
ducing no error, or introducing an error of magnitude −d(n), where d(n) is the
discrepancy; an exhaustive search approach would have to investigate all the
possible error magnitudes for each error position, i.e.

∑k
i=0

(
t
i

)
(w − 1)i possibil-

ities for a field of w elements. Both the complexities in Theorems 1 and 2 will
increase by a factor of (log w)2 to account for the more costly operations in a
field of w elements. However, the exponential part in the O estimate will remain
unchanged in Theorem 2 (Modified Berlakamp-Massey Algorithm), whereas in
Theorem 1 (Efficient Exhaustive Search), λt will be replaced by (λ(w − 1)v)t.

For a typical value of v = 0.1 (i.e. errors in at most 10% of the positions) and
an alphabet of w = 16 elements the worst case time complexity is O(

√
t1.826t)

for exhaustive search as compared to O(t
√

t1.189208t) for the proposed modified
Berlekamp-Massey algorithm.

4 Tests and Results

In order to estimate the efficiency and the accuracy of the algorithm, a compar-
ison has been done between the optimised Modified Berlekamp-Massey (MBM)
Algorithm and the Efficient Exhaustive Search (EES) Algorithm.

We define the accuracy, ACCk(s), as the ratio between LMBM,k(s), the ap-
proximate value of the k-error linear complexity obtained using the Modified
Berlekamp-Massey Algorithm and LEES,k(s), the exact value obtained using
the Efficient Exhaustive Search Algorithm, LMBM,k(s)/LEES,k(s).

The running time improvement was computed as the ratio between the time
takenby theEfficientExhaustive SearchAlgorithmand the time takenby theMod-
ified Berlekamp-Massey Algorithm on the same processor, timeEES/timeMBM .

The first test has involved running both algorithms on a number of 70 ran-
domly chosen sequences of length 64 (each bit is generated with the C rand()
linear congruential generator function).
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Figure 2 presents the average, best and worst value of ACCk over the 70
sequences tested. These results are detailed in Table 1 for 1 ≤ k ≤ 9. For small
values of k we notice that on average the k-error linear complexity obtained by
the Modified Berlekamp-Massey Algorithm is pretty close to the actual value,
being higher by only 3.37% for 1 error, increasing to 16.45% for 6 errors (i.e.
errors in about 10% of the terms) and by 25.92% for 9 errors (i.e. about 15% of
the terms). As k increases, the quality of the results obtained by the Modified
Berlekamp-Massey Algorithm deteriorates. Note however that the small values
of k are the ones of practical interest.

Table 1. The average accuracy of the results of the MBM Algorithm

Number of errors k 1 2 3 4 5 6 7 8 9

Average ACCk 1.03 1.06 1.09 1.11 1.14 1.16 1.19 1.22 1.25
Best ACCk 1 1 1 1 1 1 1 1 1

Worst ACCk 1.14 1.2 1.21 1.31 1.5 1.35 1.37 1.5 1.66

The average running time improvement was 12691, i.e. the MBM Algorithm
was nearly 13000 times faster than the EES Algorithm. Even better time im-
provements are obtained when imposing limits for the number of errors and/or
the maximum linear complexity. For example for kMax equal to 15% of the length
of the sequence and LMax approx. 1/3 of the length, the time improvement is
24017.

A second experiment involved running the Modified Berlekamp-Massey Algo-
rithm for sequences of different lengths. We used 20 random sequences for each
even length between 8 and 64. The time improvement shows an exponential

The accuracy of the results found by the Modified Berlekamp-Massey Algorithm 

on a sample of 70 random sequences of length 64
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Fig. 2. The accuracy of the MBM Algorithm on a sample of 70 random sequences of
length 64
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increase with the length of the sequence (no limitations were imposed on the
parameters kMax and LMax). See figure 3 for the results.

The quality of the approximation was measured for each sequence at different
levels of error: 5%, 10% and 15% of the length of the sequence. The results
are summarised in figure 4. We note that the approximate value of the k-error
complexity found by the modified Berlekamp-Massey Algorithm is consistently
good on all lengths tested and it deteriorates only slightly as k increases as
a percentage of the length of the sequence. For 5% errors (i.e. k is 5% of the
length), the k-error linear complexity found by the MBM algorithm is on average
not more than 10% higher than the actual value, for 10% errors it is at most
20% higher and for 15% it is at most 30% higher.

Fig. 3. The relation between the natural logarithm of the average running time im-
provement and the length of the sequences

For evaluating the accuracy of the MBM algorithm for sequences of higher
length the actual k-error linear complexity could no longer be computed us-
ing exhaustive search due to hardware limitations. Instead, we carried out a
controlled experiment where we took 50 sequences s of length 100, generated
by a randomly chosen recurrence of size 33 (1/3 of the length). We computed
the linear complexity L(s) of each sequence s (this can be lower than 33). We
artificially applied an error sequence e of weight k, such that the linear com-
plexity of s′ = s + e is higher than L(s). Obviously, Lk(s′) ≤ L(s), so even
though we do not know the exact k-error complexity of s′, we do have a good
upper bound. We then applied the MBM Algorithm to s′ and computed the
ratio LMBM,k(s′)/L(s). This time the ratio can be less than 1 because L(s) is
an upper bound rather than the exact value of Lk(s′). Figure 5 presents the
distribution of the values of this ratio in each interval of length 0.1. Four cases
were considered, depending on the choice of k: random values up to 15% of the
length of the sequence, or fixed values of 5%, 10% and 15%, respectively. We
notice that a high proportion of the ratios are below 1.1, i.e. the value found by
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Fig. 4. The average accuracy of the k-error linear complexity found by the MBM
Algorithm for different values of k and for different lengths

Fig. 5. The accuracy of the results found by MBM Algorithm on 50 sequences of length
100, when the sequences were artificially modified with errors sequences of weight : (a)
random; (b) k = 5% of the length; (c) k = 10% of the length; (d) k = 15% of the
length

the MBM algorithm is close, or even lower than the original complexity, L(s).
The results improve when k represents a higher proportion of the length of the
sequence.
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5 Conclusion

We propose a heuristic algorithm for approximating the k-error linear complex-
ity, based on the Berlekamp-Massey Algorithm. We implemented and tested this
algorithm and the results are encouraging. The k-error linear complexity is ap-
proximated pretty close: on average it is only 16% higher than the exact value,
for up to 6 errors on our test set of 70 random sequences of length 64. While the
time complexity of the proposed algorithm is still exponential, it is considerably
faster than an exhaustive search (on average about 13000 times faster for the
sequences above). Even higher efficiency gains are expected in the non-binary
case. Future work will investigate the possibility of further reducing the search
space with minimal accuracy loss.
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Abstract. Constructing efficient and secure encryption schemes is an
important motivation for modern cryptographic research. We propose
simple and secure constructions of hybrid encryption schemes that aim
to keep message expansion to a minimum, in particular for RSA-based
protocols. We show that one can encrypt using RSA a message of length
|m| bits, at a security level equivalent to a block cipher of κ bits in
security, in |m| + 4κ + 2 bits. This is therefore independent of how large
the RSA key length grows as a function of κ. Our constructions are
natural and highly practical, but do not appear to have been given any
previous formal treatment.

1 Introduction

There are many important factors to consider when choosing a practical en-
cryption scheme, including speed, provable security, code size, and bandwidth
efficiency. Bandwidth efficiency is often only considered as an afterthought, but
for many real world problems this can be as important as keeping the compu-
tational and implementational complexity low. In particular this is the case for
wireless settings, where power consumption often is a limiting factor, and trans-
mitting data is a major power drain compared to the cost of doing some extra
(offline) computation [18].

Suppose that we wish to encrypt |m|-bit messages with a security level of κ
bits, for example κ = 128. The aim of this paper is to suggest secure proto-
cols which achieves the desired security level, while keeping the length of the
ciphertexts as close to |m| bits as possible. The existing ISO/IEC standard for
public-key encryption [17] only considers bandwidth efficiency for short messages
and does not give an RSA-based scheme that is efficient for arbitrary-length mes-
sages and arbitrary RSA key sizes.

To explain our starting point in more concrete terms, let Rκ denote the size
of an RSA key equivalent to κ bits of security, and similarly let Eκ be the
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corresponding key size for elliptic curve based systems. At the time of writing,
it is widely believed that approximate values for these parameters are roughly
R80 = 1024, R128 = 3072, and Eκ = 2κ [14].

We first examine the problem by analogy with digital signature schemes. Us-
ing the ECDSA signature scheme one obtains a short signature scheme with ap-
pendix, of total length |m|+2Eκ bits, that is, in addition to the original message
we get a signature appendix consisting of two group elements. With pairings, it
is possible to shrink the size of signatures to |m|+Eκ bits using the BLS scheme
[9]. Standard RSA-based schemes such as RSA-FDH [5] or RSA-PSS [7], give
signatures of length |m| + Rκ. For signature schemes based on RSA one should
therefore consider schemes that provide some kind of message recovery, such as
the message recovering variant of RSA-PSS, if bandwidth is a limiting factor.
Indeed, there may even be situations where bandwidth is so precious that it is
necessary to use elliptic-curve based schemes with message recovery, such as [15].

We consider the similar situation for public key encryption schemes. The stan-
dard elliptic curve encryption scheme for arbitrary-length messages is ECIES,
which is a hybrid scheme modelled in the KEM+DEM framework [10]. This pro-
duces ciphertexts of length Eκ + |m| + κ. For RSA the hybrid scheme of choice
is RSA-KEM [16], which leads to ciphertexts of length Rκ + |m| + κ. While the
hybrid constructions are suitable for long messages, sufficiently short messages
may be encrypted using only a single group element using a purely asymmetric
encryption scheme, such as RSA-OAEP, [6,17]. With RSA-OAEP, a message of
maximal length |m| is encoded together with two strings, each of length that of
a hash function output, as a single group element of size Rκ = |m|+4κ+2 bits.

Our initial question was whether the bandwidth requirements for hybrid en-
cryption schemes in the KEM+DEM framework may be reduced, in particular
that of the RSA-based schemes. In the usual KEM+DEM framework, the KEM
is used to encrypt a symmetric key, while the DEM is used to encrypt the mes-
sage itself (using a symmetric encryption scheme and the key from the KEM).
However, existing KEMs typically encode the symmetric key as a group element,
and hence require either Rκ or Eκ bits.

This disparity in expansion rate grows when the security level increases, as
the size of the groups grows much faster than the size of symmetric components.
This is not so much a problem for elliptic curve systems where the growth is
linear, but for factoring based systems the growth is quite pronounced, as shown
in Fig. 1.

For “long” messages, the overhead inherent in the key encapsulation is quite
negligible. However, in constrained environments it may be of significance, par-
ticularly when the messages being sent are on (roughly) the same order of mag-
nitude as the size of the group element representation. This motivates the design
and analysis of protocols that focus on keeping the message expansion to a min-
imum, at the expense of some additional algorithmic complexity.

Since Rκ in particular grows much faster than κ, it is natural to consider
whether we may embed part of the message as part of the key encapsulation, and
recover it during the decapsulation process. Such an approach was suggested for
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Symmetric key length (κ) Size of RSA modulus (Rκ) Size of elliptic curve (Eκ)

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

Fig. 1. Suggested parameter sizes (in bits) to maintain comparable security levels be-
tween different primitives, as recommended by NIST [14]

the specific case of RSA-OAEP in [16], but to the best of the authors’ knowledge
no formal analysis of that composition has been published, nor is it mentioned
in the final ISO/IEC standard for public-key encryption [17].

In this paper we present a general concept of KEMs with message recovery, so-
called RKEMs. We define security models for RKEMs, and prove a composition
theorem which shows that a secure RKEM may be combined with an IND-CCA
and INT-CCA secure DEM to obtain an IND-CCA secure public key encryption
scheme. We then present a concrete example of an RKEM based on the RSA-
OAEP construction, which is secure in the random oracle model. In combination
with a standard Encrypt-then-MAC DEM, this results in a public key encryption
scheme with ciphertexts of length as low as |m|+5κ+3 bits, i.e. a scheme whose
messages does not depend on the size of the RSA modulus while providing κ-bit
security. We then extend the concept of RKEMs to the Tag-KEM framework
proposed by Abe et.al. [1] and propose a tag-RKEM based on the RSA-OAEP
construction, which is secure in the random oracle model and will encrypt a
message of length |m| as a ciphertext of length |m| + 4κ + 2. This is the most
space-efficient RSA-based construction known for long messages.

2 Definitions

2.1 Public Key Encryption

Our goal is to create bandwidth-efficient public key encryption schemes for
arbitrary-length messages.

Definition 1 (Public-Key Encryption Scheme). We define a public-key en-
cryption scheme PKE = (PKE .Gen ,PKE .Enc,PKE .Dec) as an ordered tuple
of three algorithms:

1. A probabilistic key generation algorithm PKE .Gen. It takes as input a secu-
rity parameter 1κ, and outputs a private/public keypair (sk, pk). As part of
the public key there is a parameter PKE .msglen that specifies the maximum
length of messages that can be encrypted in a single invocation; this value
may be infinite.
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2. A probabilistic encryption algorithm PKE .Enc. It takes as input a public key
pk and a message m of length at most PKE .msglen, and outputs a ciphertext
c.

3. A deterministic decryption algorithm PKE .Dec. It takes as input a private
key sk and a ciphertext c, and outputs either a message m or the unique
error symbol ⊥.

An encryption scheme must be sound, in the sense that the identity m =
PKE .Dec

(
sk,PKE .Enc(pk, m)

)
holds for valid keypairs (sk, pk)=PKE .Gen(1κ).

Although we assume throughout this paper that our cryptographic primitives are
perfectly sound, extension of our results to the case of non-perfect soundness is
straightforward, with standard techniques.

To discuss the security of an encryption scheme, we must define a formal
notion of what it means to “break” the scheme. Encryption schemes are designed
with the goal of confidentiality in mind: an adversary should not be able to
learn any useful information about encrypted messages. An encryption scheme
is said to be IND-secure if there does not exist an efficient adversary who, given
an encryption of two equal length messages, can determine which messages was
encrypted to form the ciphertext.

In practice, we want to construct public-key encryption schemes that main-
tain confidentiality even under adaptive chosen-ciphertext attack (-CCA), which
means that the adversary is allowed adaptive access to a decryption oracle. To
quantify the concept of security, we compare the success of an adversary with
the trivial “attack” of flipping a coin and guessing at random, and require that
the (asymptotic) gain must be a negligible function in the security parameter 1κ.

Definition 2 (Negligible function). A function f : N → R is said to be
negligible if for every polynomial p in N[x], there exists an x0 ∈ N such that
f(n) ≤ 1

|p(x)| for all x > x0.

We now define the IND-CCA attack game for public-key encryption.

Definition 3 (IND-CCA Game for PKE). The IND-CCA game for a given
public-key encryption scheme PKE is played between the challenger and a two-
stage adversary A = (A1, A2), which is a pair of probabilistic Turing machines.
For a specified security parameter 1κ, the game proceeds as follows:

1. The challenger generates a private/public keypair (sk, pk) = PKE .Gen(1κ).
2. The adversary runs A1 on the input pk. During its execution, A1 may query

a decryption oracle OD, that takes a ciphertext c as input, and outputs
PKE .Dec(sk, c). The algorithm terminates by outputting state information
s and two messages m0 and m1 of equal length.

3. The challenger picks a bit b
R← {0, 1} uniformly at random, and computes

c∗ = PKE .Enc(pk, mb).
4. The adversary runs A2 on the input (c∗, s). During its execution, A2 has ac-

cess to the decryption oracle as before, with the limitation that it may not ask
for the decryption of the challenge ciphertext c∗. The algorithm terminates
by outputting a guess b′ for the value of b.



Efficient KEMs with Partial Message Recovery 237

We say that A wins the IND-CCA game whenever b = b′. The advantage of A
is the probability

AdvIND−CCA
PKE (A) =

∣∣Pr[A wins] − 1/2
∣∣.

A scheme is said to be IND-CCA secure if the advantage of every polynomial-
time adversary is negligible (as a function of the security parameter). For specific
schemes, we rarely have unconditional security, and speak instead of security with
respect to some well-known reference problem that is thought to be difficult (such
as the RSA or Diffie-Hellman problems).

2.2 Hybrid Encryption

Hybrid encryption is the practice of constructing public-key encryption schemes
using a symmetric-key cipher as a building block. Although this adds a certain
amount of complexity, it also enables PKE schemes to handle messages of more or
less unrestricted length, at a low computational cost. The standard construction
paradigm for hybrid encryption schemes is the KEM+DEM framework [10], in
which a scheme is divided into two parts: an asymmetric Key Encapsulation
Mechanism (KEM) and a symmetric Data Encapsulation Mechanism (DEM).
Not only does this allow the encryption of arbitrary length messages but it also
means that the PKE scheme obtained, by generically combining a secure KEM
and a secure DEM, is itself secure [10]. This means that the components can be
analysed separately and combined in a mix-and-match fashion.

Various modifications and variations of the basic KEM+DEM construction
have also been proposed. In particular, we note the Tag-KEM schemes proposed
in [1]. In Appendix A we present the standard definitions of a KEM and a DEM,
how they are combined, and the appropriate security models for each.

3 KEMs with Partial Message Recovery

3.1 KEMs with Partial Message Recovery

In this section we introduce the notion of a KEM with partial message recovery
(or RKEM). A KEM with partial message recovery is, quite simply, the use of
public-key encryption to transmit a symmetric key and some partial message
data in a secure manner. An obvious instantiation of such a scheme is to use
a secure non-hybrid PKE to encrypt the “payload”, although alternate imple-
mentations may also be possible. We will show that the obvious construction is
indeed secure, and that the resulting RKEM+DEM hybrid encryption produces
shorter messages than the traditional KEM+DEM construction.

Definition 4 (RKEM). We define a KEM with partial message recovery to
be an ordered tuple RKEM = (RKEM .Gen,RKEM .Encap,RKEM .Decap) con-
sisting of the following algorithms:
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1. A probabilistic key generation algorithm RKEM .Gen. It takes a security pa-
rameter 1κ as input, and outputs a private/public keypair (sk, pk). As part of
the public key there are two parameters, RKEM .msglen and RKEM .keylen.
The value RKEM .msglen, which we assume is finite, denotes the maxi-
mum amount of message data that may be stored in an encapsulation, and
RKEM .keylen denotes the fixed length of the symmetric key generated by the
RKEM.

2. A probabilistic key encapsulation algorithm RKEM .Encap. It takes as input
a public key pk, and a message m of length at most RKEM .msglen. The al-
gorithm terminates by outputting a symmetric key k of length RKEM .keylen
and an encapsulation ψ.

3. A deterministic key decapsulation algorithm RKEM .Decap. It takes as input
a private key sk and an encapsulation ψ. The algorithm outputs either the
unique error symbol ⊥, or a pair (k, m) consisting of a symmetric key k of
RKEM .keylen bits, and a message m of RKEM .msglen bits.

If RKEM .Encap and RKEM .Decap are run using a valid keypair (sk, pk) and the
ψ output by the encapsulation algorithm is used as input to the decapsulation
algorithm, then the probability of failure is assumed to be zero. Furthermore,
the decapsulation algorithm is required to output the same values of k and m
as were associated with the encapsulation algorithm.

3.2 Security Definitions for RKEMs

Since the plaintext message is given as input to the encapsulation algorithm,
it is necessary to adopt two separate security requirements for such RKEMs.
First, we define the IND-CCA game for an RKEM similarly to that for a regular
KEM, in which the adversary tries to distinguish whether a given key is the one
embedded in a specified encapsulation.

Definition 5 (IND-CCA for RKEM). The IND-CCA game for a given
RKEM is played between a challenger and an adversary A = (A1, A2). For
a particular security parameter 1κ, the game runs as follows.

1. The challenger generates a keypair (sk, pk) = RKEM .Gen(1κ).
2. The adversary runs A1 on the input pk. During its execution, A1 may query a

decapsulation oracle OD that takes an encapsulation ψ as input, and outputs
the result of computing RKEM .Decap(sk, ψ). The algorithm terminates by
outputting a message m of length at most RKEM .msglen bits, as well as
some state information s.

3. The challenger computes (k0, ψ
∗) = RKEM .Encap(pk, m), and draws an-

other key k1
R← {0, 1}RKEM .keylen as well as a random bit b

R← {0, 1} uni-
formly at random

4. The adversary runs A2 on the input (s, kb, ψ
∗). During its execution, A2 has

access to the decapsulation oracle as before, with the restriction that it may
not ask for the decapsulation of the challenge ψ∗. The algorithm terminates
by outputting a guess b′ for the value of b.
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We say that A wins the game whenever the guess was correct, i.e. b = b′. The
advantage of A is given as

AdvIND−CCA
RKEM (A) =

∣
∣Pr[A wins] − 1/2

∣
∣.

The other criterion relates to the confidentiality of the message used as input,
and is represented by adopting the notion of RoR-CCA security from [3,13]. The
term RoR stands for real-or-random, which is because in this security definition
an adversary is unable to tell a valid encryption of a message, from a random
ciphertext. It can be shown that RoR-CCA security is equivalent to indistin-
guishability with respect to the message, but we shall not apply this equivalence
directly. Instead, we only require the RoR-CCA property of the RKEM to imply
that the full hybrid encryption scheme is IND-CCA secure.

Definition 6 (RoR-CCA for RKEM). The RoR-CCA game for KEMs with
partial message recovery is defined as follows:

1. The challenger generates a keypair (sk, pk) = RKEM .Gen(1κ).
2. The adversary runs A1 on the input pk. During its execution, A1 may query a

decapsulation oracle OD that takes an encapsulation ψ as input, and outputs
the result of computing RKEM .Decap(sk, ψ). The algorithm terminates by
outputting a message m0 of length at most RKEM .msglen bits, as well as
some state information s.

3. The challenger generates a random message m1, which is of the same length as
m0, a random bit b

R← {0, 1}, and computes (k∗, ψ∗)=RKEM .Encap(pk, mb).
4. The adversary runs A2 on the input (s, k∗, ψ∗). During its execution, A2 has

access to the decapsulation oracle as before, with the restriction that it may
not ask for the decapsulation of the challenge ψ∗. The algorithm terminates
by outputting a guess b′ for the value of b.

We say that A wins the game whenever the guess was correct, i.e. b = b′. In
each case the advantage of A is

AdvRoR−CCA
RKEM (A) =

∣
∣Pr[A wins] − 1/2

∣
∣.

Note that IND-CCA security definition really is about the ability of the adversary
to determine whether a specified key is real or random, and RoR-CCA security is
about the ability of the adversary to determine whether the embedded message
is real or random. Hence, a more accurate nomenclature would be K-RoR-CCA
and M-RoR-CCA, but we use the above nomenclature to stress the link with
prior security definitions for standard KEMs.

3.3 Security of the Composition of an IND-CCA and RoR-CCA
Secure RKEM and an IND-PA and INT-CTXT Secure DEM

Combining an RKEM with a DEM is done in the straightforward manner:
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Definition 7 (RKEM+DEM Construction). Given an RKEM and a DEM
where the keys output by the RKEM are of the correct length for use with the
DEM, i.e. RKEM .keylen = DEM .keylen, we construct a hybrid PKE scheme as
follows.

– The key generation algorithm PKE .Gen executes RKEM .Gen to produce a
private / public keypair, and appends any necessary information about the
operation of the DEM.

– The encryption algorithm PKE .Enc is implemented as follows.
1. The message m is padded to be of size at least RKEM .msglen − 1.
2. The message m is then split into two component m(0) and m(1), i.e.

m = m(0)||m(1), where m(0) is of length RKEM .msglen − 1.
3. Set v = 1, unless m(1) = ∅, in which case we set v = 0.
4. Compute a key/encapsulation pair (k, ψ) = RKEM .Encap(pk, m(0)||v).
5. If v = 1 then encrypt the remaining part of the message to obtain a

ciphertext χ = DEM .EncK(m(1)), otherwise set χ = ∅.
6. Output the ciphertext c = (ψ, χ).

– The decryption algorithm PKE .Dec is implemented as follows.
1. Parse the ciphertext to obtain (ψ, χ) = c.
2. Recover the key and message fragment from ψ by computing (k, m(0)||v)=

RKEM .Decap(sk, ψ).
3. If k = ⊥, return ⊥ and halt.
4. If v = 1 and χ �= ∅, return ⊥ and halt.
5. If v = 0, return m(0) and halt.
6. Compute m(1) = DEM .Deck(χ).
7. If m(1) = ⊥, return ⊥ and halt.
8. Output m(0)||m(1).

The soundness of the RKEM+DEM construction follows from the soundness of
the individual RKEM and DEM.

In the case where |m| ≤ RKEM .msglen, there are few practical reasons to
use the hybrid setup at all, and this is included mainly to avoid placing any
artificial restrictions on our allowable message space. Our definition is no longer
optimal in this case, since there is no reason to encapsulate a symmetric key
k at all. We note that an alternate definition could specify that RKEM .Decap
returns a binary string s instead of k and m(1)||v, which may then be parsed
and interpreted depending on the value of v. The distinction is not important
for our analysis, and is omitted in the further discussion for the sake of clarity.

Theorem 1 (Security of RKEM+DEM). If the underlying RKEM is both
IND-CCA and RoR-CCA secure and the DEM is IND-PA and INT-CTXT se-
cure1, then the above composition is IND-CCA secure.

More precisely we have, that if there is an adversary A against the above public
key scheme, then there are polynomial-time adversaries B1, B2, B3 and B4 such
that
1 The security definitions for DEMs are given in the Appendix.
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AdvIND−CCA
PKE (A) ≤ 2 · AdvIND−CCA

RKEM (B1) + qD · AdvINT−CTXT
DEM (B2)

+ 2 · AdvRoR−CCA
RKEM (B3) + AdvIND−PA

DEM (B4),

where qD is an upper bound on the number of decryption queries made by A.

Proof. Let A denote our adversary against the hybrid PKE system and let Game
0 be the standard IND-CCA game for a PKE. We prove the security by succes-
sively modifying the game in which A operates. In Game i, we let Ti denote the
event that b = b′. Hence

AdvIND−CCA
PKE (A) = | Pr[T0] − 1/2|.

Let Game 1 be the same as Game 0 except that if the challenger is asked by the
adversary to decrypt a ciphertext (ψ∗, χ), where ψ∗ is equal to the encapsulation-
part of the challenge, then it uses the key k∗ output by the encapsulation function
when it decrypts χ, i.e. it only uses the valid decryption algorithm associated to
the RKEM to obtain m(0). Since we assume that our algorithms are perfectly
sound this is purely, at this stage, a conceptual difference, i.e.

Pr[T0] = Pr[T1].

Game 2 proceeds identically to Game 1, except for in the computation of the
second component χ∗ of the challenge ciphertext, where a random key k′ is used
instead of the key k∗ that was returned by RKEM .Encap. It is clear that there
exists a machine B1, whose running time is essentially that of A, which can turn
a distinguisher between the two games into an adversary against the IND-CCA
property of the RKEM. We have

| Pr[T1] − Pr[T2]| ≤ 2 · AdvIND−CCA
RKEM (B1).

Let Game 3 be the same as Game 2 except that when the challenger is
asked by the adversary to decrypt a ciphertext (ψ∗, χ), where ψ∗ is equal to
the encapsulation-part of the challenge, then it simply rejects the ciphertext. It
is clear that there exists a machine B2, whose running time is essentially that
of A, which can turn a distinguisher between the two games into an adversary
against the INT-CTXT property of the DEM. We have

| Pr[T2] − Pr[T3]| ≤ qD · AdvINT−CTXT
DEM (B2).

In Game 4, we change the computation of the encapsulation so that it en-
capsulates a random string instead of the first part of the message m(0), but we
encrypt the second part of the message as in Game 2. Again, it is clear that there
exists a machine B3, whose running time is essentially that of A, which can turn
a distinguisher between the two games into an adversary against the RoR-CCA
property of the RKEM. We have

| Pr[T3] − Pr[T4]| ≤ 2 · AdvRoR−CCA
RKEM (B3).
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Finally, in Game 4 we note that the first component of the ciphertext is
completely random and independent of any message, and that the second part
of the ciphertext is an encryption under a completely random key k∗. Hence, the
adversary in Game 4 is essentially just an algorithm B4 which is attacking the
IND-PA property of the DEM, i.e.

| Pr[T4] − 1/2] ≤ AdvIND−PA
DEM (B4).

Putting the above equalities together we obtain the stated result

AdvIND−CCA
PKE (A) = |Pr[T0] − 1/2| = |Pr[T1] − 1/2|

= |(Pr[T1] − Pr[T2]) + (Pr[T2] − Pr[T3])
+(Pr[T3] − Pr[T4]) + (Pr[T4] − 1/2)|

≤ |Pr[T1] − Pr[T2]| + |Pr[T2] − Pr[T3]|
+ |Pr[T3] − Pr[T4]| + |Pr[T4] − 1/2]|

≤ 2AdvIND−CCA
RKEM (B1) + qD · AdvINT−CTXT

DEM (B2)
+ 2AdvRoR−CCA

RKEM (B3) + AdvIND−PA
DEM (B4).

	


3.4 Constructions of RKEMs

A secure RKEM may be instantiated from an IND-CCA secure PKE in the
obvious manner: use the PKE to encrypt the state bit, the κ-bit symmetric
session key, and PKE .msglen − κ − 1 bits of message payload. It is easy to
show that this construction is both IND-CCA and RoR-CCA secure, and that
this is tightly related to the IND-CCA security of the underlying PKE 2. If we
implement this trivial scheme using RSA-OAEP, the total length of ciphertexts
will be |m| + 6κ + 3; in the particular case of κ = 128 we save roughly 2400 bits
in comparison with RSA-KEM.

However, the efficiency of our construction can be improved even further for
a particular class of IND-CCA secure public-key encryption schemes. Let c =
E(pk, m; r) denote a public key encryption algorithm taking a random string r as
auxiliary input, with associated decryption function m = D(sk, c). We say that
a public key algorithm is randomness recovering, if the decryption algorithm
D(sk, c) can be modified so that it returns not only m but also the randomness
used to construct c, i.e. we have that if c = E(pk, m; r) then (m, r) = D(sk, c).
Such a scheme is said to be secure if it is IND-CCA secure with respect to the
message m, and is OW-CPA secure with respect to the pair (m, r).

2 In particular, the adversary is being given a challenge for the RKEM consisting
of the encapsulation ψ∗, and a decapsulation oracle that computes (k, m(0)||v) =
RKEM .Decap(sk, ψ), where k|m(0)|v = PKE .Dec(sk, c). In both the IND-CCA and
ROR-CCA games the goal of the adversary is to determine some property of part
of the “plaintext”, either k or m(0). Whenever PKE is itself IND-CCA this is clearly
not feasible.
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There exist various practical public key encryption schemes that are securely
randomness recovering, including RSA-OAEP and any scheme constructed using
the Fujisaki-Okamoto transform [12]. In both of these constructions the IND-
CCA security is standard, whilst the OW-CPA security with respect to the pair
(m, r) follows from the OW-CPA security of the underlying primitive. We can
use this to create a RKEM which incurs less overhead compared to the maximal
message length of the underlying PKE.

Our IND-CCA and RoR-CCA secure RKEM is constructed as follows:

– RKEM .Gen is defined to be the key generation of the public key scheme,
plus the specification of a hash function H . The parameter RKEM .msglen is
a single bit less than the maximum message length of the public key scheme,
and RKEM .keylen is the output length of H .

– RKEM .Encap takes a message m of length RKEM .msglen. It then computes
ψ = E(pk, m; r) for some randomness r, k = H(m||r) and returns (k, ψ).

– RKEM .Decap takes the encapsulation ψ and decrypts it using D(sk, ψ). If
D(sk, ψ) returns ⊥, then the decapsulation algorithm returns ⊥ and halts.
Otherwise the pair (m, r) is obtained and the algorithm proceeds to compute
k = H(m||r) and returns (m, k).

The RoR-CCA security of the above RKEM construction follows from the
IND-CCA security of the underlying public key encryption scheme. The IND-
CCA security follows, in the random oracle model, from the OW-CPA security
of the underlying primitive with respect to the pair (m, r), using essentially the
same proof of security as for standard RSA-KEM [16].

As mentioned in the introduction, by using RSA-OAEP in this construction
one can obtain a public key encryption algorithm for messages of length m,
which outputs ciphertexts of length |m| + 5κ + 3 bits for a given security pa-
rameter κ. This breaks down as follows: the RSA-OAEP encryption scheme (as
defined in the ISO/IEC standard for public-key encryption [17]) has overhead
of 2 Hash.len + 2 bits, where Hash.len is the length of the output from a cryp-
tographic hash function, commonly taken to be 2κ bits3. Furthermore, a single
state bit is used to keep track of the message length inside the RKEM. Finally,
the usual method of constructing a DEM that is INT-CTXT requires a κ-bit mes-
sage authentication code (MAC). In comparison with RSA-KEM using κ = 128,
this scheme saves more than 2500 bits per message!

As we see, the above construction gives ciphertexts that are independent of
the size of the RSA modulus used, being linear in the security parameter. Fur-
thermore, we are able to extend the limited message space of the underlying
RSA-based primitive “optimally”, with only κ + 1 bits of overhead!

4 Tag-KEMs with Partial Ciphertext Recovery

After having discussed KEMs with partial message recovery it is natural to look
at other formal models that exist for hybrid encryption schemes. In this section
3 Although it may appear from the original OAEP paper that this should be only κ

bits, it is necessary to use 2κ bits to deal with a more realistic attack model [2].
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we consider Tag-KEMs [1], which have recently come into prominence as an
attractive alternative to traditional KEMs. The main difference from regular
KEMs is that the key encapsulation is used to preserve the integrity of the
ciphertext, in addition to confidentiality of the symmetric key. The main result
of [1] is that the use of Tag-KEMs makes it possible to create secure encryption
schemes using a DEM that is only IND-PA. We define Tag-KEMs with partial
ciphertext recovery (tag-RKEM) by direct extension of the previous definition
in [1].

Definition 8 (Tag-KEM with Partial Ciphertext Recovery). A Tag-
KEM with partial ciphertext recovery (tag-RKEM) is defined as an ordered tuple
of four algorithms.

1. A probabilistic algorithm TKEM .Gen used to generate public keys. It takes
a security parameter 1κ as input, and outputs a private/public keypair (sk,
pk). The public key includes all information needed for users of the scheme,
including parameters specifying the length of the symmetric keys used
(TKEM .keylen) and the size of the internal message space (TKEM .msglen).

2. A probabilistic algorithm TKEM .Sym used to generate one-time symmetric
keys. It takes a public key pk as input, and outputs a symmetric encryption
key k and a string of internal state information s.

3. A probabilistic algorithm TKEM .Encap used to encapsulate the symmetric
key and part of the ciphertext. It takes some state information s as well as a
tag τ as input, and outputs a key encapsulation ψ together with a suffix string
τ (1) of τ = τ (0)||τ (1) (consisting of the part of τ that may not be recovered
from ψ).

4. A deterministic algorithm TKEM .Decap used to recover the encapsulated key
and ciphertext fragment from an encapsulation. It takes a private key sk, an
encapsulation ψ and a partial tag τ (1) as input, and outputs either a key k
and the complete tag τ , or the unique error symbol ⊥.

A Tag-KEM is required to be sound in the obvious manner, i.e. for any τ
and keypair (sk, pk) we have that TKEM .Decap(sk, ψ, τ (1)) = (k, τ) whenever
(ψ, τ (1)) = TKEM .Encap(ω, τ) and (k, ω) = TKEM .Sym(pk). We note that the
definition collapses to that of [1] if we set TKEM .msglen = 0.

4.1 Security Definition for Tag-KEMs with Partial Ciphertext
Recovery

A Tag-RKEM is said to be IND-CCA secure if there does not exist an adversary
who can distinguish whether a given key k∗ is the one embedded in an encapsu-
lation ψ∗. The adversary has access to a decapsulation oracle, and is allowed to
choose the tag τ∗ used in the challenge encapsulation adaptively, but may not
query the decapsulation oracle on the corresponding (ψ∗, τ (1)∗). This corresponds
to the notion of IND-CCA security for RKEMs used in the previous section, and
is directly analogous to the security definition for regular Tag-KEMs [1].
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Definition 9 (IND-CCA Security of Tag-RKEM). For a given security
parameter 1κ, the IND-CCA game played between the challenger and an adver-
sary A = (A1, A2, A3) runs as follows.

1. The challenger generates a private / public keypair (sk, pk)=TKEM .Gen(1κ).
2. The adversary runs A1 on the input pk. During its execution, A1 may query

a decapsulation oracle ODecap(·, ·) which takes an encapsulation ψ and a tag
τ (1) as input, and returns the result of computing TKEM .Decap(sk, ψ, τ (1)).
The algorithm terminates by outputting some state information s1.

3. The challenger computes (k0, ω) = TKEM .Sym(pk), and samples another
key k1

R← {0, 1}TKEM .keylen uniformly at random. He then selects a random
bit b

R← {0, 1}.
4. The adversary runs A2 on the input (s1, kb). During its execution, A2 has

access to the same oracle as before. The algorithm terminates by outputting
some state information s2 and a tag τ∗.

5. The challenger generates a challenge encapsulation

(ψ∗, τ (1)∗) = TKEM .Encap(s1, τ
∗).

6. The adversary runs A3 on the input (s2, ψ
∗, τ (1)∗). During its execution, A3

has access to the same oracle as before, with the restriction that the challenge
(ψ∗, τ (1)∗) may not be queried. The algorithm terminates by outputting a
guess b′ of the value of b.

We say that A wins the game whenever the guess was correct, i.e. b = b′. The
advantage of A is given as

AdvIND−CCA
TKEM (A) =

∣
∣Pr[A wins] − 1/2

∣
∣.

The security definition for Tag-RKEMs is versatile, in the sense that for a
Tag-RKEM to be IND-CCA it must not only ensure that its symmetric keys
are indistinguishable from random with respect to their encapsulations, but also
enforce certain non-malleability conditions with respect to τ . In particular, since
the adversary is able to submit decapsulation oracle queries adaptively on ψ and
τ (1), the decapsulation procedure must be non-malleable in the sense that oracle
queries such as (ψ∗, τ (1)) or (ψ, τ (1)∗) reveal no information about k∗.

Fig. 2. Data flow in the Tag-KEM + DEM construction
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4.2 Security of the Composition of an IND-CCA Secure Tag-RKEM
and an IND-PA Secure DEM

Combining a Tag-RKEM with a DEM is done by using the key from TKEM .Sym
with DEM .Enc to produce a ciphertext, and using the resulting ciphertext as
the tag for TKEM .Encap. The overall data-flow is illustrated in Fig. 2.

Definition 10 (TKEM+DEM Construction). Given a TKEM and a DEM
where the keys output by the TKEM are of correct length for use with the DEM,
we construct a hybrid PKE scheme as follows.

– The key generation algorithm PKE .Gen is implemented by using RKEM .Gen
and appending any necessary information about the DEM to the public key.

– The encryption algorithm PKE .Enc is implemented as follows.
1. Compute a symmetric key (k, ω) = TKEM .Sym(pk).
2. Compute the symmetric ciphertext χ = DEM .Enck(m).
3. Create a key encapsulation using the ciphertext χ as the tag, by computing

(ψ, χ(1)) = TKEM .Encap(ω, χ).
4. Output the ciphertext c = (ψ, χ(1)).

– The decryption algorithm PKE .Dec is implemented as follows.
1. Parse the ciphertext to obtain (ψ, χ(1)) = c.
2. Recover k and χ from ψ and χ(1) by computing (k, χ)=TKEM .Decap(sk,

ψ, χ(1)).
3. If TKEM .Decap returned ⊥, return ⊥ and halt.
4. Recover the original message by running m = DEM .Deck(χ).
5. If DEM .Dec returned ⊥, return ⊥ and halt.
6. Output m.

The soundness of the above construction follows from the soundness of the indi-
vidual tag-RKEM and DEM. We note that this construction embeds part of the
symmetric ciphertext rather than plaintext in the encapsulation, which explains
why we no longer require RoR-CCA security (with respect to the message). This
fact simplifies security analysis a great deal.

Theorem 2 (Security of TKEM+DEM). If the underlying Tag-KEM with
partial ciphertext recovery is IND-CCA secure and the DEM is IND-PA secure,
then the TKEM+DEM composition is secure.

More precisely we have, that if there is an adversary A against the above hybrid
public key scheme, then there are polynomial-time adversaries B1, B2 such that

AdvIND−CCA
PKE (A) ≤ 2 · AdvIND−CCA

TKEM (B1) + AdvIND−PA
DEM (B2).

Proof. Let A denote our adversary against the hybrid PKE system, and let Game
0 be the standard IND-CCA game for a PKE. We prove the security by making
a single modification to Game 0, which causes the maximal advantage of any A
to be clearly bounded. We define T0 and T1 to be the event that b = b′ in Games
0 and 1.
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Let Game 1 be the same as Game 0, except that the challenger creates the
symmetric ciphertext using a key k∗ picked uniformly at random, rather than
the key output by TKEM .Sym . It is clear that there exists a machine B1 whose
running time is essentially that of A, which can turn a distinguisher between
the two games into an adversary against the IND-CCA property of the TKEM.
Hence we have that

| Pr[T0] − Pr[T1]| = 2 · AdvIND−CCA
TKEM (B1).

However, in Game 1 the value of the challenge encapsulation ψ∗ reveals no
information about the key k∗ used to create the ciphertext χ, since the sym-
metric key k∗ was sampled independently of ω∗. Hence, the only information
about the value of mb available to A is the symmetric ciphertext fragment χ(1)∗

(and plausibly the full symmetric ciphertext χ∗, depending on how the TKEM
is constructed). Furthermore, the adversary is not able to make any adaptive
decryption queries under k∗. Hence there exists a machine B2 whose running
time is essentially that of A, such that

| Pr[T1] − 1/2| = AdvIND−PA
DEM (B2).

Summarising, we obtain the stated result.

AdvIND−CCA
PKE (A) ≤ 2 · AdvIND−CCA

TKEM (B1) + AdvIND−PA
DEM (B2).

	


4.3 Constructions of Tag-KEMs with Partial Ciphertext Recovery

Having established that Tag-KEMs with partial ciphertext recovery are viable
in principle, it remains to suggest a practical instantiation. We generalise a con-
struction of Dent [11] to the tag-RKEM setting. This constructions makes use of
an IND-CPA encryption scheme (PKE .Gen ,PKE .Enc,PKE .Dec) and two hash
functions H and KDF . We suppose that the message space of the encryption
scheme is PKE .msglen and we use the notation PKE .Enc(m, pk; r) to denote
applying the encryption algorithm to a message m with a public key pk using
random coins r. We require two security properties of the encryption scheme:
that it is γ-uniform and that it is partially one-way.

Definition 11 (γ-uniform). An encryption scheme

(PKE .Gen ,PKE .Enc,PKE .Dec)

is γ-uniform if, for all possible messages m and ciphertexts c

Pr[PKE .Enc(m, pk) = c] ≤ γ

where the probability is taken over the random coins of the encryption algorithm.
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Definition 12 (POW-CPA). An encryption scheme (PKE .Gen, PKE .Enc,
PKE .Dec) is partially one way with respect to inputs of length � ≤ PKE .msglen
if no probabilistic polynomial-time attacker A = (A1, A2) can win the following
game with non-negligible probability:

1. The challenger generates a key pair (pk, sk) = PKE .Gen(1κ).
2. The attacker runs A1 on the input pk. A1 terminates by outputting a tag τ

of length PKE .msglen − � and some state information s,
3. The challenger randomly chooses a seed value α of length �, sets m = α||τ

and computes c∗ = PKE .Enc(m, pk).
4. The attacker runs A2 on the input (c∗, s). A2 terminates by outputting a

guess α′ for α.

The attacker wins if α′ = α.

Note that if the encryption scheme is IND-CPA and � is super-poly-logarithmic
as a function of the security parameter, then the encryption scheme is POW-CPA
secure.

We assume that we can split PKE .msglen into two lengths TKEM .keylen and
TKEM .msglen such that PKE .msglen = TKEM .keylen + TKEM .msglen . We
construct the tag-RKEM as follows:

1. TKEM .Gen runs PKE .Gen to generate a public/private key pair, and ap-
pends the values of TKEM .keylen and TKEM .msglen to the public key.

2. TKEM .Sym picks a random seed α of length TKEM .keylen and derives a
key k = KDF (α). The algorithm outputs the state information s = (pk, α)
and the key k.

3. TKEM .Encap runs in several steps:
(a) Parse s as (pk, α).
(b) Parse τ as τ (0)||τ (1) where τ (0) is TKEM .msglen-bits long if τ con-

tains more than TKEM .msglen bits and τ (0) = τ if τ is less than
TKEM .msglen bits in length.

(c) Compute m = α||τ (0).
(d) Compute r = H(α, τ).
(e) Compute ψ = PKE .Enc(m, pk; r).
(f) Output ψ.

4. TKEM.Decap runs in several steps:
(a) Compute m = PKE .Dec(ψ, sk).
(b) Parse m as α||τ (0) where α is TKEM .keylen bits in length.
(c) If τ (0) is less than TKEM .msglen bits in length and τ (1) �= ∅, then output

⊥.
(d) Compute τ = τ (0)||τ (1).
(e) Compute r = H(α||τ).
(f) If ψ �= PKE .Enc(m, pk; r) then output ⊥.
(g) Otherwise output k = KDF (α).
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Theorem 3. Suppose there exists an attacker A against the tag-RKEM in the
random oracle model that makes at most qD decapsulation oracle queries, qK

queries to the KDF-oracle, qH queries to the H-oracle, and breaks the IND-CCA
security with advantage AdvIND−CCA

TKEM . Then there exists an attacker B against
the POW-CPA security of the public key encryption scheme (with respect to the
length TKEM .keylen) with advantage

AdvPOW−CPA
PKE ≥ 1

qD + qK + qH

{
AdvIND−CCA

TKEM − qD/2TKEM .keylen − qDγ
}

Corollary 1. If TKEM .keylen grows super-poly-logarithmically, γ is negligible
and (PKE .Gen ,PKE .Enc,PKE .Dec) is partially one-way with respect to the
length TKEM .keylen, then the tag-KEM construction is secure.

If we instantiate this construction using the RSA-OAEP encryption scheme and
a passively secure DEM, then the result construction will encrypt a message of
length n using n + 4κ + 2 bits. This saves κ + 1 more bits than the RKEM
construction given in Section 3.
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A KEM-DEM Framework

A.1 Definitions

Definition 13 (KEM). A key encapsulation mechanism is defined by KEM =
(KEM .Gen ,KEM .Encap,KEM .Decap) as an ordered tuple of three algorithms.

1. A probabilistic key generation algorithm KEM .Gen. It takes as input a se-
curity parameter 1κ, and outputs a private/public keypair (sk, pk). As part
of the public key there is a parameter KEM .keylen that specifies the length
of the symmetric keys used by the DEM.
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2. A probabilistic key encapsulation algorithm PKE .Encap. It takes as input a
public key pk, and outputs a symmetric key k of length KEM .keylen, and an
encapsulation ψ.

3. A deterministic decapsulation algorithm PKE .Decap. It takes as input a pri-
vate key sk and an encapsulation ψ and outputs either a key k or the unique
error symbol ⊥.

The KEM is sound if for almost all valid keypairs (sk, pk), whenever (k, ψ) was
the output of PKE .Encap(pk), we have k = PKE .Decap(sk, ψ).

Definition 14 (DEM). We define a data encapsulation mechanism DEM =
(DEM .Enc,DEM .Dec) as an ordered pair of algorithms.

1. A deterministic encryption algorithm DEM .Enc. It takes as input a message
m and a symmetric key k of a specified length DEM .keylen, and outputs a
ciphertext χ.

2. A deterministic decryption algorithm DEM .Dec. It takes as input a cipher-
text χ and a symmetric key k of specified length, and outputs either a message
m or the unique error symbol ⊥.

The DEM is sound as long as m = DEM .Deck

(
DEM .Enck(m)

)
holds.

We assume that a DEM can take inputs of arbitrary length messages, thus the
fact that the DEM can take a message of arbitrary length implies that any
resulting hybrid encryption scheme can also take arbitrary length messages.

Definition 15 (KEM+DEM Construction). Given a KEM and a DEM,
where the keys output by the KEM are of correct length for use with the DEM,
i.e. DEM .keylen = KEM .keylen, we construct a hybrid PKE scheme as follows.

– The key generation algorithm PKE .Gen is implemented using KEM .Gen.
– The encryption algorithm PKE .Enc is implemented as follows.

1. Compute a key/encapsulation pair (k, ψ) = KEM .Encap(pk).
2. Encrypt the message to obtain a ciphertext χ = DEM .Enck(m).
3. Output the ciphertext c = (ψ, χ).

– The decryption algorithm PKE .Dec is implemented as follows.
1. Parse the ciphertext to obtain (ψ, χ) = c.
2. Compute the symmetric key k = KEM .Decap(sk, ψ).
3. If k = ⊥, return ⊥ and halt.
4. Decrypt the message m = DEM .Deck(χ).
5. If m = ⊥, return ⊥ and halt.
6. Output m.

The soundness of the KEM+DEM construction follows from the soundness of
the individual KEM and DEM. A hybrid PKE scheme created from an IND-CCA
secure KEM and an IND-CCA secure DEM is itself secure [10].
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A.2 Security Models

For hybrid components such as KEMs and DEMs, we may adapt the indis-
tinguishability criterion for public key schemes for each. For a KEM, the fun-
damental requirement is to ensure that the adversary does not learn anything
about a key from its encapsulation. Indeed, given a key and an encapsulation
the adversary should not be able to tell whether a given key is the one contained
in an encapsulation. This is (slightly confusingly, since it is really a question of
whether the key presented is “real”or“random”) usually referred to as IND-CCA
security.

Definition 16 (IND-CCA Game for KEM). The IND-CCA game for a
given key encapsulation mechanism KEM is played between the challenger and
an adversary A = (A1, A2). For a specified security parameter 1κ, the game
proceeds as follows.

1. The challenger generates a private/public keypair (sk, pk) = KEM .Gen(1κ).
2. The adversary runs A1 on the input pk. During its execution, A1 may query

a decapsulation oracle OD that takes an encapsulation ψ as input, and out-
puts KEM .Decap(sk, ψ). The algorithm terminates by outputting some state
information s.

3. The challenger generates a real key and its encapsulation, by calling (k0, ψ
∗)=

KEM .Encap(pk), as well as a random key k1 drawn uniformly from the
keyspace of the KEM. It also picks a random bit b

R← {0, 1}.
4. The adversary runs A2 on the input (kb, ψ

∗, s). During its execution, A2
has access to the decapsulation oracle as before, but it may not ask for the
decapsulation of ψ∗. The algorithm terminates by outputting a guess b′ for
the value of b.

We say that A wins the IND-CCA game whenever b = b′. The advantage of A
is the probability

AdvIND−CCA
KEM (A) =

∣∣Pr[A wins ] − 1/2
∣∣.

For DEMs, we give two security notions, the first of which is an adaption of the
above notion of IND-security with respect to the input message.

Definition 17 (IND-PA Game for DEM). The IND-PA game for a given
data encapsulation mechanism DEM is played between the challenger and an
adversary A = (A1, A2). For a specified security parameter 1κ, the game proceeds
as follows.

1. The challenger generates a random symmetric key k.
2. The adversary runs A1 on the input 1κ. The algorithm terminates by out-

putting two messages m0 and m1 of equal length, and some state information
s.

3. The challenger generates a random bit b
R← {0, 1} and encrypts the plaintext

mb, by calling χ∗ = DEM .Enck(mb).
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4. The adversary runs A2 on the input (χ∗, s). The algorithm terminates by
outputting a guess b′ for the value of b.

We say that A wins the IND-PA game whenever b = b′. The advantage of A is
the probability

AdvIND−PA
DEM (A) =

∣
∣Pr[A wins] − 1/2

∣
∣.

Note, that a stronger notion of security exists which is IND-CCA, in this notion
we give the adversary in both stages access to a decryption oracle with respect
to the challengers key, subject to the constraint that in the second stage the
adversary may not call the decryption oracle on the challenge ciphertext.

The other security notion we require is ciphertext integrity or INT-CTXT.
This was first defined in [4], however we will only require a one-time security
notion.

Definition 18 (INT-CTXT Game for DEM). The INT-CTXT game for
a given data encapsulation mechanism DEM is played between the challenger
and an adversary A = (A1, A2). For a specified security parameter 1κ, the game
proceeds as follows.

1. The challenger generates a random symmetric key k.
2. The adversary runs A1 on the input 1κ. During its execution, A1 may query

a decryption oracle OD with respect to the key k; that takes a ciphertext χ as
input, and outputs DEM .Deck(χ). The algorithm terminates by outputting
a single messages m, and some state information s.

3. The challenger encrypts the plaintext m, by calling χ∗ = DEM .Enck(m).
4. The adversary runs A2 on the input (χ∗, s). As before the adversary has

access to it decryption oracle OD, however it may not call its oracle on the
target ciphertext χ∗. The algorithm terminates by outputting a ciphertext
χ′ �= χ∗.

The adversary wins the game if it the ciphertext χ′ is a valid ciphertext, i.e. it can
be decrypted by the decryption algorithm. The advantage of A is the probability

AdvINT−CTXT
DEM (A) = Pr[A wins] .

It is proved in [4] that in the many-time setting, a scheme which is both IND-PA
and INT-CTXT will be IND-CCA as well. It is straightforward to verify that
this property also holds for one-time encryption schemes.

We note that a symmetric cipher which is IND-PA (such as a secure block
cipher in CBC mode with fixed IV) can be made INT-CTXT by adding a secure
Message Authentication Code using the basic Encrypt-then-MAC construction.
This is also the “standard”way of producing an IND-CCA symmetric cipher [10].

B Proof of Theorem 3

In this section we prove the the tag-RKEM construction given in Section 4.3 is
secure. In other words, we prove the following theorem:
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Theorem 3. Suppose there exists an attacker A against the tag-RKEM in the
random oracle model that makes at most qD decapsulation oracle queries, qK

queries to the KDF-oracle, qH queries to the H-oracle, and breaks the IND-CCA
security with advantage AdvIND−CCA

TKEM . Then there exists an attacker B against
the POW-CPA security of the public key encryption scheme (with respect to the
length TKEM .keylen) with advantage

AdvPOW−CPA
PKE ≥ 1

qD + qK + qH

{
AdvIND−CCA

TKEM − qD/2TKEM .keylen − qDγ
}

Proof. The proof is very similar to the construction of Dent [11]. We model both
the hash function H and the key derivation function KDF as random oracles.
The tag-RKEM attacker can then gain no advantage in determining whether the
challenge key k∗ is correct key or not unless the attacker queries the KDF oracle
on the challenge seed value α∗. This can be done either implicitly (by making a
valid decapsulation oracle query that uses the value α∗ as its seed) or explicitly by
querying the KDF -oracle directly. We show that it is computationally infeasible
for the attacker to make a valid decapsulation oracle query using the seed α∗

without querying the H-oracle on some message α∗||τ . Hence, the only way that
the attacker can gain a non-negligible advantage is to query one of the random
oracles with a value involving α∗. We can therefore recover α∗, and solve the
POW-CPA problem by guessing which oracle query contains α∗.

We use non-programmable random oracles. These random oracles are simu-
lated using two lists KDFList and HList. In both cases, when a query is made
to the random oracle on an input x, then oracle searches the relevant list for a
record (x, y). If such a record exists, then the oracle outputs y; otherwise, the
oracle generates a random value y of the appropriate size, adds (x, y) to the
appropriate list, and outputs y.

Again, we use a game-hopping proof. Let Ti be the event that the tag-RKEM
attacker wins in Game i. Let Game 0 be the normal IND-CCA attack game for
A. Hence,

AdvIND−CCA
TKEM = |Pr[T0] − 1/2| .

Let Game 1 be identical to Game 0 except that the attacker is immediately
deemed to have lost the game if, on conclusion of the game, it turns out that A
queried the decapsulation oracle on the challenge ciphertext ψ∗ before the chal-
lenge ciphertext was issued. (We are forced to do this as the simulated decapsu-
lation oracle that we will define would incorrectly decapsulate this ciphertext as
⊥). Let E1 be the event that A1 submits ψ∗ to the decapsulation oracle. Since
A1 has no information about ψ∗ at this point, this would require A1 to guess
the value of ψ∗, which implicitly means that A1 has guessed the value of α∗ as
ψ∗ uniquely defines the value of α∗. Hence, Pr[E1] ≤ qD/2TKEM .keylen and we
obtain the following relation:

|Pr[T0] − Pr[T1]| ≤ Pr[E1] ≤ qD/2TKEM .keylen .

Game 2 will be identical to Game 1 except that we change the decapsulation
oracle to the following simulated decapsulation oracle:
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1. The oracle takes as input an encapsulation ψ and a tag τ . It parses τ as
τ (0)||τ (1).

2. The oracle searches HList for an entry with input values (α, τ) and output
value r such that ψ = PKE .Enc(α||τ (0), pk; r).

3. If such a record exists, then the oracle outputs KDF (r); otherwise, it output
⊥.

Game 2 functions identically to Game 1 unless the attacker makes a decapsu-
lation oracle query which is valid in Game 1 but declared invalid in Game 2.
Let E2 be the event that this occurs. The only way that E2 can occur is if A
submits a ciphertext ψ and tag τ for decapsulation such that H(α, τ) = r and
ψ = PKE .Enc(α||τ (0), pk; r) but A has not submitted α||τ to the H-oracle. This
means that, in the view of the attacker, the value r is completely random. Hence,
the probability that ψ is an encryption of α||τ (0) is bounded by γ and we obtain
the following relation:

|Pr[T1] − Pr[T2]| ≤ qDγ .

We may now construct an attacker B = (B1, B2) against the POW-CPA prop-
erty of the encryption scheme and relate B’s success probability to A’s advantage
in Game 2. B1 takes pk as input and runs as follows:

1. Run A1 on the input pk. Simulates the oracles to which A has access as in
Game 2. A1 terminates by outputting some state information s1.

2. Generates a random key k∗.
3. Run A2 on the input (k∗, s1). Simulate the oracles to which A has access as

in Game 2. A2 terminates by outputting some state information s2 and a
tag τ∗.

4. Parse τ∗ as τ∗(0)||τ∗(1).
5. Output the tag τ∗(0).

The challenger will now pick a random seed α∗ and form the challenge ciphertext
ψ∗ by encrypting α∗||τ∗(0). B2 takes ψ∗ as input and runs as follows:

1. If A1 or A2 made a decapsulation oracle query on the value ψ∗, then output
⊥ and halt.

2. Run A3 on the input ψ∗ and s2. Simulate the oracles to which A has access
as in Game 2. A3 terminates by outputting a bit b′.

3. Randomly choose an entry from the total number of records in KDFList

and HList, and extract the value α from this query. Output α as the guess
for α∗.

B completely simulates the oracles to which A has access up until the point that
A makes a KDF -oracle query on α∗ or an H-oracle query on α∗||τ . If A does
not make such a query, then its advantage is 0; hence, the probability that A
makes such a query is equal to A’s advantage in Game 2.

Therefore, the probability that B correctly solves the POW-CPA problem is
equal to the probability that A makes a KDF -oracle query on α∗ or an H-oracle
query on α∗||τ , and B correctly guesses a record that contains a reference to α∗.
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Since there are at most qD + qK + qH records in KDFList and HList, this will
happen with probability at least 1/qD + qK + qH . Hence,

AdvPOW−CPA
PKE ≥ 1

qD + qK + qH
· |Pr[T2] − 1/2|

≥ 1
qD + qK + qH

{
AdvIND−CCA

TKEM − qD/2TKEM .keylen − qDγ
}

This proves the theorem. 	
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Abstract. We extend the generic framework of reproducibility for reuse
of randomness in multi-recipient encryption schemes as proposed by Bel-
lare et al. (PKC 2003). A new notion of weak reproducibility captures not
only encryption schemes which are (fully) reproducible under the criteria
given in the previous work, but also a class of efficient schemes which can
only be used in the single message setting. In particular, we are able to
capture the single message schemes suggested by Kurosawa (PKC 2002),
which are more efficient than the direct adaptation of the multiple mes-
sage schemes studied by Bellare et al. Our study of randomness reuse in
key encapsulation mechanisms provides an additional argument for the
relevance of these results: by taking advantage of our weak reproducibil-
ity notion, we are able to generalise and improve multi-recipient KEM
constructions found in literature. We also propose an efficient multi-
recipient KEM provably secure in the standard model and conclude the
paper by proposing a notion of direct reproducibility which enables tighter
security reductions.
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1 Introduction

Generating randomness for cryptographic applications is a costly and security-
critical operation. It is often assumed in security analysis that parameters are
sampled from a perfect uniform distribution and are handled securely. More-
over, various operations performed by a cryptographic algorithm depend on the
random coins used within the algorithm. These operations, such as a group expo-
nentiation, can be quite costly and prevent the use of the scheme in constrained
devices. Therefore, minimising the amount of fresh randomness required in cryp-
tographic algorithms is important for their overall efficiency and security.

One approach to minimise this problem is to reuse randomness across multiple
instantiations of cryptographic algorithms, namely in the context of batch oper-
ations where (possibly different) messages are encrypted to multiple recipients.
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This avenue must be pursued with caution, since randomness reuse may hinder
the security of cryptographic schemes. However, when possible, this technique
allows for significant savings in processing load and bandwidth, since partial re-
sults (and even ciphertext elements) can be shared between multiple instances
of a cryptographic algorithm.

Examples of this method are the multi-recipient encryption schemes proposed
by Kurosawa [11], the mKEM scheme by Smart in [12], the certificateless en-
cryption scheme in [3] where randomness is shared between the identity-based
and public-key components, and the cryptographic workflow scheme in [2].

Bellare et al. [4], building on the work of Kurosawa [11], systematically study
the problem of reusing randomness. The authors examine multi-recipient encryp-
tion, and consider the particular case of constructing such schemes by running
multiple instances of a public-key encryption (PKE) scheme, whilst sharing ran-
domness across them. An interesting result in this work is a general method for
identifying PKE schemes that are secure when used in this scenario. Schemes
which satisfy the so-called reproducibility test are guaranteed to permit a hybrid
argument proof strategy which is generally captured in a reproducibility theorem.
Bellare et al. later leveraged on these results to propose a stateful encryption
framework [5] which enables more efficient encryption operations.

In this paper we extend the above theoretical framework supporting the reuse
of randomness to construct multi-recipient encryption schemes. The main contri-
bution of this paper is a more permissive test that permits constructing a wider
class of efficient single message multi-recipient schemes. Of particular interest
are the optimised modified versions of the ElGamal and Cramer-Shoup multi-
recipient encryption schemes briefly mentioned by Kurosawa in the final section
of [11]. We show that these schemes do not fit the randomness reuse framework
originally proposed by Bellare et al. and propose extensions to the original defi-
nitions which capture these as well as other similar schemes. The technique that
we employ to prove the main Theorem (Theorem 1) deviates from that of [4]
and may be of independent interest in other contexts.

We then turn our attention to the KEM/DEM paradigm and focus on key
encapsulation mechanisms [7]. Adaptation of the results in [4] is straightfor-
ward if one focuses on multi-recipient KEMs generating independent keys for
each recipient. The interesting case arises when one considers single key multi-
recipient KEMs. To construct these schemes efficiently by reusing randomness,
we define the notion of public key independent KEM1. However, we find that
if such a KEM satisfies an appropriate modification of the reproducibility test
of Bellare et al. it cannot be secure. To compensate for this negative result, we
propose an alternative generic construction of efficient single key multi-recipient
KEMs based on weakly secure and weakly reproducible PKEs. We also present
a concrete efficient construction, which is secure in the standard model.

The paper is structured as follows. In Section 2 we define what we mean
by secure multi-recipient PKEs and full reproducibility, and go on to define

1 This closely related to the notion of partitioned identity-based KEMs independently
proposed by Abe et al. in [1].
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weak reproducibly. Concrete schemes are analysed in Section 3. In Section 4
we examine extensions of the previous results to KEMs. Finally, in Section 5
we propose a new approach to the reproducibility generalisation that captures
tighter security reductions, discuss the results we obtained using this strategy,
and conclude with some associated open problems.

2 A New Notion of Reproducibility

2.1 Multi-recipient PKEs

An n-Multi-Recipient PKE (n-MR-PKE) [4] is defined similarly to a standard
PKE scheme, with two exceptions: (1) The key generation algorithm is param-
eterised with a domain parameter I which ensures compatibility between users’
key pairs and various spaces2. We denote the randomness, message and cipher-
text spaces by the letters R, M and C respectively; and (2) The encryption
algorithm takes a list of n message/public key tuples and outputs a list of n
ciphertexts.

Given a PKE scheme we can build the associated n-MR-PKE as follows. The
key generation and decryption algorithms are identical to the underlying PKE
(which we call the base PKE). Encryption is defined naturally by running multi-
ple parallel instances of the base PKE encryption algorithm. If the randomness
tapes in all instantiations are constant, the resulting n-MR-PKE scheme is called
randomness reusing. In case there are common parameters that may be shared
by all public keys to improve overall efficiency3, these are included in the domain
parameter I. The formal security model for an n-MR-PKE, as defined in [4], con-
siders the possibility of insider attacks by allowing the adversary to corrupt some
of the users by maliciously choosing their public keys. This ensures that security
is still in place between the legitimate recipients, or in other words, that there
is no “cross-talk” between the ciphertexts intended for different recipients.

In this work we are interested in a special case of n-MR-PKEs where the same
message is sent to all recipients. We refer to this special case as single message
(n-SM-PKE for simplicity), and note that such a scheme can also take advantage
of randomness reuse. This specific case is a recurring use-case of n-MR-PKEs in
practice, and one could ask if the single message restriction makes it any easier to
construct n-MR-PKE schemes. More precisely, is there a wider range of schemes
that can be used to construct efficient n-SM-PKEs through randomness reuse?

Below is the simplified security model for n-SM-PKEs. There is an important
difference to the n-MR-PKE model: the adversary is no longer able to corrupt
users. The reason for this is that, since all recipients will be getting the same
message, there is no need to enforce security across the individual ciphertexts.
We will also see in Section 4 that this weaker model is particularly relevant in

2 This parameter is generated once for all users and henceforth, unless specifically
stated otherwise, we leave its generation as implicit to simplify notation.

3 For example in a Diffie–Hellman based scheme, this might include a domain modulus
and generator which all parties use to create key pairs.
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the hybrid encryption scenario. Throughout the game, the adversary also has
access to O1 and O2, which denote a set of oracles, as follows:

– If atk = CPA then O1 = O2 = NULL;
– If atk = CCA4 then O1 is a set of decryption oracles one for each PKi and O2

is same as O1 except that no component C∗
i of the challenge ciphertext C∗

can be submitted to an oracle corresponding to PKi.

IND-atk
1. For i = 1, . . . , n

(SKi, PKi) ← Gn−SM−PKE(I)
2. (M0, M1, s) ← AO1

1 (PK1, . . . , PKn)
3. b ← {0, 1}
4. C∗ ← En−SM−PKE(Mb, (PKi)n

i=1)
5. b′ ← AO2

2 (C∗, s)

AdvIND−atk
n−SM−PKE(A) := |2 Pr[b′ = b] − 1|.

2.2 Weak Reproducibility for PKEs

Definition 1. A PKE scheme is fully reproducible if there exists a probabilistic
polynomial time (PPT) algorithm R such that the following experiment returns
1 with probability 1.

1. (PK, SK), (PK′, SK′) ← GPKE(I)
2. r ← RPKE(I); M, M ′ ← MPKE(I)
3. C ← EPKE(M, PK; r)
4. If R(PK, C, M ′, PK′, SK′) = EPKE(M ′, PK′; r) return 1, else return 0

It is shown in [4] that an IND-atk secure PKE scheme satisfying the above
definition can be used to construct an efficient IND-atk secure n-MR-PKE, by
reusing randomness across n PKE instances. This result is interesting in itself,
as it constitutes a generalisation of a proof strategy which can be repeated,
almost without change, for all schemes satisfying the reproducibility test. This
is a hybrid argument where an n-MR-PKE attacker is used to construct an
attacker against the base scheme. The reproducibility algorithm generalises the
functionality required to extend a challenge in the single-user PKE security
game, to construct a complete challenge for the n-MR-PKE security game.

The SM security model proposed in the previous section is somewhat simpler
than the original model in [4], so it is conceivable that a wider range of PKE
schemes can be used to construct secure n-SM-PKEs, namely efficient random-
ness reusing ones. Hence, we are interested in defining a less restrictive version of
reproducibility that permits determining whether a PKE scheme can be safely
used in the single message scenario, even if it does not satisfy the full repro-
ducibility test above. The following definition achieves this.
4 In this paper we use IND-CCA to denote a fully adaptive chosen ciphertext attack

sometimes denoted by IND-CCA2.
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Definition 2. A PKE scheme is weakly reproducible (wREP) if there exists a
PPT algorithm R such that the following experiment returns 1 with probability 1.

1. (SK1, PK1), (SK2, PK2), (SK3, PK3) ← GPKE(I)
2. r ← RPKE(I); M, M ′ ← MPKE(I)
3. C1 ← EPKE(M, PK1; r); C2 ← EPKE(M, PK2; r)
4. If R(PK1, C1, M, PK2, SK2) �= C2 return 0
5. If R(PK1, C1, M

′, PK3, SK3) �= R(PK2, C2, M
′, PK3, SK3) return 0, else return 1

Similarly to the original REP definition, the wREP definition follows from the
generalisation of the hybrid argument which allows reducing the security of a
randomness reusing n-SM-PKE to that of its base scheme. The intuition behind
the definition is as follows. We are dealing which single message schemes. There-
fore we only require correct reproduction when the two messages are the same.
When the messages are different, we relax the definition and require only that
R is source-PK independent (condition 5). This property is easy to check.

To see why more schemes might satisfy this definition, note that R is not even
required to produce a valid ciphertext when the messages are different. In Sec-
tion 3 we analyse specific PKE schemes and give a formal separation argument
which establishes that the wREP definition is meaningful: there are schemes
which satisfy this definition and which are not fully reproducible. Conversely,
it is easy to check that the following Lemma holds, and that wREP fits in the
original reproducibility generalisation.

Lemma 1. Any scheme which is fully reproducible is also weakly reproducible.

The following theorem shows that the wREP definition is sufficient to guarantee
n-SM-PKE security. The proof uses techniques which are somewhat different
from that in [4] and may be of independent interest in other contexts.

Theorem 1. The associated randomness reusing n-SM-PKE scheme of an IND-
atk public-key encryption scheme is IND-atk secure if the base PKE is weakly
reproducible. More precisely, any PPT attacker A with non negligible advantage
against the randomness reusing n-SM-PKE scheme can be used to construct
attackers B and D against the base PKE, such that:

AdvIND−atk
n−SM−PKE(A) ≤ n · AdvIND−atk

PKE (B) + (n − 1) · AdvIND−atk
PKE (D).

Proof. We present the argument for the IND-CPA case, since the IND-CCA
version is a straightforward extension where simulators use their knowledge of
secret keys and external oracles to answer decryption queries. We begin by defin-
ing the following experiment, parameterised with an IND-atk attacker A against
the randomness reusing n-SM-PKE scheme, and indexed by a coin b and an
integer l such that 0 ≤ l ≤ n.
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Expl,b(A)

1. (P̂K, ŜK) ← GPKE(I)
2. (PKi, SKi) ← GPKE(I), for 1 ≤ i ≤ n
3. (M0, M1, s) ← A1(PK1, . . . , PKn)
4. Ĉ ← EPKE(Mb, P̂K)
5. Ci ← R(P̂K, Ĉ, M1, PKi, SKi), for 1 ≤ i ≤ l
6. Ci ← R(P̂K, Ĉ, M0, PKi, SKi), for l + 1 ≤ i ≤ n
7. c ← A2(C1, . . . , Cn, s)
8. Return c

Looking at this experiment, and recalling from the wREP definition that R
performs perfect reproduction when the input message is the same as that inside
the input ciphertext, we can write the following equation:

AdvIND−atk
n−SM−PKE(A) = | Pr[Expn,1(A) = 1] − Pr[Exp0,0(A) = 1]|.

This follows from the advantage definition, and fact that when (l, b) = (n, 1),
then Ĉ will encapsulate M1, and all challenge ciphertexts are reproduced with
M1, which gives rise to a valid n-IND-atk ciphertext encapsulating M1. The
same happens for M0, when (l, b) = (0, 0).

We now define a probabilistic algorithm B which tries to break the base PKE
scheme using A.

B1(P̄K)
1. Select l at random such that 1 ≤ l ≤ n
2. (PKl, SKl) ← (P̄K, ⊥)
3. (PKi, SKi) ← GPKE(I), for 1 ≤ i ≤ n and i �= l
4. (M0, M1, s) ← A1(PK1, . . . , PKn)
5. Return (M0, M1, (M0, M1, l, P̄K, (PK1, SK1), . . . , (PKn, SKn), s))

B2(C̄, (M0, M1, l, P̄K, (PK1, SK1), . . . , (PKn, SKn), s))
1. Cl ← C̄
2. Ci ← R(P̄K, C̄, M1, PKi, SKi), for 1 ≤ i ≤ l − 1
3. Ci ← R(P̄K, C̄, M0, PKi, SKi), for l + 1 ≤ i ≤ n

4. b̂ ← A2(C1, . . . , Cn, s)
5. Return b̂

To continue the proof, we will require the following two Lemmas, which we shall
prove shortly.

Lemma 2. For 1 ≤ l ≤ n − 1, and for any PPT adversary A, there is an
adversary D such that

AdvIND−atk
PKE (D) = | Pr[Expl,1(A) = 1] − Pr[Expl,0(A) = 1]|.

Lemma 3. For 1 ≤ i ≤ n, the output of algorithm B and that of Expl,b(A) are
related as follows:

Pr[b̂ = 1|l = i ∧ b̄ = 1] = Pr[Expi,1(A) = 1]

Pr[b̂ = 1|l = i ∧ b̄ = 0] = Pr[Expi−1,0(A) = 1].

Here b̄ is the hidden bit in C̄.
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Let us now analyse overall the probability that B returns 1, conditional on the
value of the hidden challenge bit b̄. Since B choses l uniformly at random, we
may write:

Pr[b̂ = 1|b̄ = 1] =
1
n

n∑

i=1

Pr[b̂ = 1|l = i ∧ b̄ = 1]

Pr[b̂ = 1|b̄ = 0] =
1
n

n∑

i=1

Pr[b̂ = 1|l = i ∧ b̄ = 0].

Taking advantage of Lemma 3, we can rewrite these as:

Pr[b̂ = 1|b̄ = 1] =
1
n

n∑

i=1

Pr[Expi,1(A) = 1]

Pr[b̂ = 1|b̄ = 0] =
1
n

n∑

i=1

Pr[Expi−1,0(A) = 1].

Subtracting the previous equations and rearranging the terms, we get

n(Pr[b̂ = 1|b̄ = 1] − Pr[b̂ = 1|b̄ = 0]) −

(
n−1∑

i=1

Pr[Expi,1(A) = 1] −
n−1∑

i=1

Pr[Expi,0(A) = 1])

= Pr[Expn,1(A) = 1] − Pr[Exp0,0(A) = 1].

Considering the absolute values of both sides and using Lemma 2, we can write

nAdvIND−atk
PKE (B) + (n − 1)AdvIND−atk

PKE (D) ≥ AdvIND−atk
n−SM−PKE(A).

In other words
AdvIND−atk

n−SM−PKE(A) ≤ (2n − 1)ε,
where ε is negligible and the theorem follows. �

We now prove the required lemmas.

Proof. (Lemma 2) We build an algorithm Dl = (D1,l, D2,l) which runs A in
exactly the same conditions as it is run in Expl,b, and which can be used to win
the IND-atk game against the base PKE with an advantage which is the same
as A’s capability of distinguishing between Expl,0 and Expl,1.

D1,l(P̄K)

1. (PKi, SKi) ← GPKE(I), for 1 ≤ i ≤ n
2. (M0, M1, s) ← A1(PK1, . . . , PKn)
3. Return (M0, M1, (M0, M1, P̄K, (PK1, SK1), . . . , (PKn, SKn), s))

D2,l(C̄, (M0, M1, P̄K, (PK1, SK1), . . . , (PKn, SKn), s))

1. Ci ← R(P̄K, C̄, M1, PKi, SKi), for 1 ≤ i ≤ l
2. Ci ← R(P̄K, C̄, M0, PKi, SKi), for l + 1 ≤ i ≤ n

3. b̂ ← A2(C1, . . . , Cn, s)
4. Return b̂
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D simply uses the challenge public key P̄K in place of P̂K in the experiment, and
uses the PKE challenge C̄ in place of Ĉ. Note that the only visible difference to
the definition of Exp is that D does not know S̄K, which it does not need, and
that the IND-atk hidden bit b̄ is used in place of b. We can therefore write, for
a given value of l:

Pr[b̂ = 1|b̄ = 1] = Pr[Expl,1(A) = 1]|
Pr[b̂ = 1|b̄ = 0] = Pr[Expl,0(A) = 1]|,

and consequently

AdvIND−atk
PKE (D) = | Pr[Expl,1(A) = 1] − Pr[Expl,0(A) = 1]|. �

Proof. (Lemma 3) We present here the proof for the first case in the Lemma, and
leave the second case, which is proved using a similar argument, for Appendix
A. The first case of the Lemma states that

Pr[b̂ = 1|l = i ∧ b̄ = 1] = Pr[Expi,1(A) = 1].

We must show that the probability distribution of the inputs presented to A is
exactly the same in the scenarios corresponding to both sides of the equation
above. This is trivially true for the public keys that A1 receives, since all of them
are independently generated using the correct algorithm. Regarding the challenge
ciphertext that A2 gets, we start by expanding the values of (C1, . . . , Cn).

In Expi,1(A), we have Ĉ = EPKE(M1, P̂K; r) and:

Cj = R(P̂K, Ĉ, M1, PKj , SKj) for 1 ≤ j ≤ i

Cj = R(P̂K, Ĉ, M0, PKj , SKj) for i + 1 ≤ j ≤ n.

On the other hand, in B2(C̄, s̄), given that l = i and b̄ = 1 we have C̄ =
EPKE(M1, P̄K; r) and:

Ci = C̄

Cj = R(P̄K, C̄, M1, PKj , SKj) for 1 ≤ j ≤ i − 1
Cj = R(P̄K, C̄, M0, PKj , SKj) for i + 1 ≤ j ≤ n.

To show that the distributions are identical, we split the argument in three
parts and fix the values of all random variables, considering the case where
the public keys provided to A in both cases are the same, and that the implicit
randomness in both Ĉ and C̄ is the same r. We show that the resulting challenge
ciphertexts in both cases are exactly the same:

– j = i: Note that in the second scenario we have Ci = C̄, while in the first
scenario we have Ci = R(P̂K, Ĉ, M1, PKi, SKi). Since Ĉ encrypts M1, the result
of R is perfect and equal to EPKE(M1, PKi; r) = C̄.

– j < i: In this range, challenge components are identical in both scenarios:
they are perfect reproductions EPKE(M1, PKj ; r), since M1 is passed to R both
in encrypted and plaintext form.
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– j > i: In this range, challenge components are outputs of R, but in this case
we cannot claim that they are identical without resorting to the properties
of the wREP algorithm. For different message reproduction, condition 5 of
Definition 2 ensures that

R(P̂K, Ĉ, M0, PKj , SKj) = R(P̄K, C̄, M0, PKj , SKj)

as required.

This means that the first case of the Lemma follows. �

3 Kurosawa’s Efficient Schemes

In this section we analyse modified versions of ElGamal and Cramer-Shoup en-
cryption schemes briefly mentioned by Kurosawa [11] as a way to build efficient
single-message multiple-recipient public key encryption schemes. These schemes
permit establishing a separation between the original reproducibility notion pro-
posed by Bellare et al. and the one we introduced in the previous section.

3.1 Modified ElGamal

The modified ElGamal encryption scheme is similar to the ElGamal encryption
scheme and operates as follows. The key generation algorithm GPKE(I) on input
I := (p, g) returns the key pair (SK, PK) = (1/x, gx) for x ← Z

∗
p. The encryption

algorithm EPKE(M, PK; r) returns the ciphertext (u, v) := ((gx)r, m · gr) for r ←
Z
∗
p. The decryption algorithm DPKE(u, v, 1/x) returns the message m := v/(u1/x).
Theorem 2 establishes the security of the modified ElGamal scheme as well

as its weak reproducibility property. Theorem 3 shows that modified ElGamal
establishes a separation between the notions of full and weak reproducibility.

Theorem 2. Modified ElGamal is (1) IND-CPA secure under the decisional
Diffie–Hellman assumption, and (2) weakly reproducible.

Proof. (1) The proof is similar to that for the ElGamal encryption scheme.
(2) The weak reproducibility algorithm R on input (gx, u, v, m′, gx′

, 1/x′)
returns ((v/m′)x′

, v). We now check that R satisfies the two properties required
by the wREP definition. If m′ = m, then v/m′ = (m ·gr)/m = gr and the output
is a valid encryption of m′ under gx′

using random coins r. Note also that R’s
output does not dependent on the public key gx and hence the second property
is also satisfied. �

Theorem 3. The modified ElGamal encryption is not fully reproducible under
the CDH assumption.

Proof. Let (g, ga, gb) ∈ G3 denote the CDH problem instance. Our goal is to com-
pute gab. The reproduction algorithm on input (p, g, gx, grx, m · gr, m′, gy, 1/y)
outputs (gry, m′ · gr). We pass to R the input (p, ga, g, gb, 1, 1, ga, 1) which could
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be written as (p, h, h1/a, hb·1/a, 1, 1, h, 1) where h = ga. Note that since R suc-
ceeds with probability 1, it will run correctly on the above input instance even
though its distribution is far away from those that R takes. Here implicitly we
have x = 1/a, from rx = b/a we get r = b, and m = h−b. Hence the first
component of the output of R will be (h1)b = gab. �

3.2 Modified Cramer-Shoup

Another construction of an efficient n-SM-PKE hinted at by Kurosawa in [11]
is based on the CS1a encryption scheme of Cramer and Shoup [7], modified in
an analogous manner to the ElGamal encryption scheme as presented in the
previous section. In this case, the construction is secure against adaptive chosen
ciphertext attacks in the standard model. Modified versions of the other schemes
presented in [7] also pass the weak reproducibility test without being fully re-
producible. The following scheme, however, is the most efficient as it shares ĝ as
a domain parameter.

The scheme is defined as follows. The domain parameter is I := (p, g, ĝ, H),
where g and ĝ are generators of a group G of prime order p and H denotes
a cryptographic hash function. The key generation algorithm GPKE(I) outputs
(x1, x2, y1, y2, z), a random element of (Zp)5, as the secret key and the public
key is set to be (gx1 ĝx2 , gy1 ĝy2 , gz). Encryption and decryption algorithms are:

EPKE(m, PK)
– (e, f, h) ← PK
– u ← Zp

– â ← ĝu

– b ← hu

– c ← m · gu

– v ← H(â, b, c)
– d ← eufuv

– Return (â, b, c, d)

DPKE((â, b, c, d), SK)
– (x1, x2, y1, y2, z) ← SK
– v ← H(â, b, c)
– a ← b1/z

– If ax1+y1vâx2+y2v �= d return ⊥
– m ← c/a
– Return m

Theorem 4. The modified Cramer-Shoup scheme is (1) IND-CCA under the
DDH assumption and (2) weakly reproducible.

The proof of the first part of theorem is essentially that of the standard Cramer-
Shoup scheme in [7]. We omit the proof details due to space limitations. Regard-
ing the second part of Theorem 4, the weak reproduction algorithm is a natural
extension of the one presented for modified ElGamal, returning

(â, (c/m′)z′
, c, (c/m′)u(x′

1+v′y′
1)âu(x′

2+v′y′
2)),

where v′ := H(â, (c/m′)z′
, c). A very important distinction in this case, however,

is that the reproduction algorithm produces an output which may not be a valid
ciphertext. In fact, for different message reproduction, the encryption algorithm
would never be able to produce something like the resulting ciphertext. The
returned output is, however, indistinguishable from a valid ciphertext under the
decisional Diffie–Hellman assumption. The fact that the outputs of R may not
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be identically distributed to the outputs of the encryption algorithm, but merely
indistinguishable, implies that the proof strategy presented in [4] does not apply
for this scheme. On the other hand, note that the technique presented in the
proof of Theorem 1 covers this and other similar schemes.

4 Hybrid Encryption

Practical applications of public key encryption are based on the hybrid paradigm,
where public key techniques are used to encapsulate symmetric encryption keys.
Formally, this is captured by the KEM/DEM framework [7]. Sharing randomness
across multiple instances of a KEM may be justified, as before, as a means to
achieve computational savings when performing batch operations. In this section
we study randomness reuse for KEMs, a problem which has not been formally
addressed by previous work.

The KEM primitive takes the recipient’s public key as the single parameter to
the encapsulation algorithm. In particular, unlike what happens in PKEs, one
does not control the value of the encapsulated key: this is internally generated
inside the KEM primitive, and its value depends only on the recipient’s public key
and on the randomness tape of the encapsulation algorithm. Since in this work
we are interested on the role of randomness inside cryptographic algorithms, this
leads us to the following categorisation of KEMs.

Definition 3. A KEM scheme is public key independent if the following exper-
iment returns 1 with probability 1.

1. (SK, PK), (SK′, PK′) ← GKEM(I)
2. r ← RKEM(I)
3. (K, C) ← EKEM(PK; r); (K ′, C′) ← EKEM(PK′; r)
4. If K = K ′ return 1, else return 0

Considering what happens when one shares randomness across several instances
of an encapsulation algorithm immediately suggests two independent adapta-
tions of KEMs to the multi-recipient setting. The first, which we generically call
multi-recipient KEMs (n-MR-KEMs), are functionally equivalent to the inde-
pendent execution of n KEM instances, thereby associating an independent en-
capsulated secret key to each recipient. The second, which we will call single-key
multi-recipient KEMs (n-SK-KEMs), given that the same secret key is encapsu-
lated to all recipients, is akin to the mKEM notion introduced in [12].

Adaptation of the results in [4] to n-MR-KEMs is straightforward. The same
is not true, however, for n-SK-KEMs. To justify why this is the case, we present
a reproducibility test for KEMs in Definition 4. It is a direct adaptation of the
reproducibility test for PKEs, considering that there is no message input to the
encapsulation algorithm and that this returns also the encapsulated secret key.
It can be easily shown that any KEM satisfying this test can be used to construct
an efficient n-MR-KEM with randomness reuse.

Definition 4. A KEM is called reproducible if there exists a PPT algorithm R
such that the following experiment returns 1 with probability 1.
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1. (SK, PK), (SK′, PK′) ← GKEM(I)
2. r ← RKEM(I)
3. (K, C) ← EKEM(PK; r); (K ′, C′) ← EKEM(PK′; r)
4. If R(PK, C, PK′, SK′) = (K ′, C′) return 1, else return 0

An n-SK-KEM, referred to as an mKEM in [12], is a key encapsulation mecha-
nism which translates the hybrid encryption paradigm to the multi-cast setting:
it permits encapsulating the same secret key to several different receivers. The
point is that encrypting a single message to all these recipients can then be done
using a single DEM instantiation based on that unique session key, rather than
n different ones. This provides, not only computational savings, but also band-
width savings, and captures a common use of hybrid encryption in practice. The
natural security model for n-SK-KEMs is shown below.

IND-atk
1. For i = 1, . . . , n

(SKi, PKi) ← Gn−SK−KEM(I)
2. s ← AO1

1 (PK1, . . . , PKn)
3. b ← {0, 1}
4. (K0, C

∗) ← En−SK−KEM((PKi)n
i=1)

5. K1 ← {0, 1}κ

6. b′ ← AO2
2 (C∗, Kb, s)

AdvIND−atk
n−SK−KEM(A) := |2 Pr[b′ = b] − 1|.

As usual, the adversary also has access to O1 and O2, which denote a set of
oracles, as follows:

– If atk = CPA then O1 = O2 = NULL;
– If atk = CCA then O1 is a set of decapsulation oracles, one for each PKi, and

O2 is same as O1 except that no component C∗
i of the challenge ciphertext

C∗ can be submitted to an oracle corresponding to PKi.

Unlike n-MR-KEMs there does not seem to be a natural way of constructing
n-SK-KEMs from single-recipient KEMs. The fact that the same key should be
encapsulated for all recipients makes public key independent KEMs the only
possible candidates to be used as base KEMs. However, any public key indepen-
dent scheme which satisfies a reproducibility test such as that in Definition 4
must be insecure, as anyone would be able to use the reproducibility algorithm
to obtain the secret key in an arbitrary ciphertext. In the following we show how
the weak reproducibility notion for PKEs we obtained in Theorem 1 actually fills
this apparent theoretical gap, as it permits capturing the efficient n-SK-KEMs
constructions we have found in literature. We conclude this section proposing a
concrete construction of an efficient n-SK-KEM secure in the standard model.

4.1 Generic Construction of n-SK-KEMs

One trivial way to build secure randomness reusing n-SK-KEMs is to use a
secure weakly reproducible encryption scheme, and to set a random message to
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be the ephemeral key. However, the underlying encryption scheme must have the
same security guarantees as those required for the KEM. A more practical way
to build a fully secure n-SK-KEM is to use a weaker PKE through the following
generic construction, which generalises the mKEM scheme proposed in [12] and
extends a construction by Dent in [8]. The domain parameters and key generation
algorithm are the same as those of the underlying PKE. Encapsulation and
decapsulation algorithms are:

En−SK−KEM(PK1, . . . , PKn)
– M ← MPKE(I)
– r ← H(M)
– For i = 1 . . . , n

Ci ← EPKE(M, PKi; r)
– C ← (C1, . . . , Cn)
– K ← KDF(M)
– Return (K, C)

Dn−SK−KEM(C, SK)
– M ← DPKE(M, SK)
– If M =⊥ return ⊥
– r ← H(M)
– If C �= EPKE(M, PK; r) return ⊥
– K ← KDF(M)
– Return K

Here H and KDF are cryptographic hash functions. The security of this scheme
is captured via the following theorem, proved in Appendix B.

Theorem 5. The above construction is an IND-CCA secure n-SK-KEM, if the
underlying PKE is IND-CPA and weakly reproducible, and if we model H and
KDF as random oracles. More precisely, any PPT attacker A with non negligible
advantage against the generic n-SK-KEM can be used to construct an attacker
B against the base PKE, such that:

AdvIND−CCA
n−SK−KEM(A) ≤ 2n(qH + qK + qD)AdvIND−CPA

PKE (B) + ε,

where qH , qK and qD are the number of queries the adversary makes to H, KDF
and decapsulation oracles and ε denotes a negligible quantity.

The security argument for this construction has two parts. The first part es-
tablishes the one-way security of the n-SK-PKE scheme associated with the
base PKE. This follows directly from the weak reproducibility theorem in Sec-
tion 3.2 and the fact that one-wayness is implied by indistinguishability5. The
second part builds on the previous result to achieve IND-CCA security in the
n-SK-KEM setting, using a general construction laid out by Dent in [8]. In this
construction one models the hash function H and KDF as random oracles and
shows that the queries placed by any adversary with non-negligible advantage
in breaking the n-SK-KEM scheme can be used to invert the one-wayness of the
underlying n-SM-PKE scheme.

The mKEM in [12] fits the general framework we introduced in this paper
by instantiating the above construction with the ElGamal encryption scheme.
The results in this work permit introducing two interesting enhancements over
the mKEM in [12] if the above construction is instantiated with the modified
ElGamal scheme:
5 We assume that various message spaces have exponential size in the security param-

eter.
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– Stronger security guarantees disallowing benign malleability. The security
model in [12] disallows decapsulation queries on any ciphertext which de-
capsulates to the same key as that implicit in the challenge.

– More efficient encryption algorithm, saving n − 1 group operations.

4.2 An Efficient n-SK-KEM Secure in the Standard Model

In this section we propose an efficient n-SK-KEM scheme which is IND-CCA
secure in the standard model. To the best of our knowledge, it is the first such
construction to achieve this level of security and efficiency. The scheme is an
adaptation of a KEM proposed by Cramer and Shoup in [7], which is public
key dependent and therefore cannot be used as a black-box to construct an
n-SK-KEM. The adapted scheme is defined as follows.

The domain parameter is I := (p, g, ĝ, H, KDF), where g and ĝ are generators
of a group G of prime order p, H is a cryptographic hash function and KDF is
a key derivation function. The key generation algorithm Gn−SK−KEM(I) outputs
SK = (x1, x2, y1, y2, z), a random element of Z

4
p × Z

∗
p, as the secret key and PK =

(e, f, h) = (gx1 ĝx2 , gy1 ĝy2 , gz) as the public key. Encapsulation and decapsulation
algorithms are:

En−SK−KEM(PK1, . . . , PKn)
– u ← Zp

– â ← ĝu

– b ← gu

– K ← KDF(â, b)
– For 1 ≤ i ≤ n

(ei, fi, hi) ← PKi

ai ← hu
i

vi ← H(â, ai)
di ← eu

i fuvi

i

– Return (K, â, a1, . . . , an, d1, . . . , dn)

Dn−SK−KEM((â, a, d), SK)
– (x1, x2, y1, y2, z) ← SK
– v ← H(â, a)
– b ← a1/z

– If bx1+vy1 âx2+vy2 �= d
return ⊥

– K ← KDF(â, b)
– Return K

A proof that the n-SK-KEM scheme proposed above is IND-CCA secure under
the decisional Diffie–Hellman assumption, provided that the hash function is
target collision resistant, and that the KDF function is entropy smoothing will
appear in the full version of this paper.

5 Tighter Reductions

In [4] the authors present tighter security reductions for the multi-recipient ran-
domness reusing schemes associated with the ElGamal and Cramer-Shoup en-
cryption schemes. These reductions rely on the random self-reducibility property
of the DDH problem. The tighter reductions are achieved by using this property
to unfold a single DDH problem instance, so that it can be embedded in the
multiple challenge ciphertext components required in the multiple user setting.
In these proofs, the extra public keys and challenge ciphertexts required in the
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reduction are chosen in a controlled manner. For instance, one public key might
have a known discrete logarithm with respect to another. The following notion of
reproducibility could be viewed as a generalisation of this type of proof strategy
for tight reductions.

Definition 5. A PKE scheme is called directly reproducible (dREP) if there
exists a set of PPT algorithms R = (R1, R2, R3) such that the following experi-
ment returns 1 with probability 1.

1. (SK, PK) ← GPKE(I)
2. (PK′, s) ← R1(PK)
3. M ← MPKE(I); r ← RPKE(I)
4. C ← EPKE(M, PK; r); C′ ← EPKE(M, PK′; r)
5. If C′ �= R2(C, s) return 0
6. If C �= R3(C′, s) return 0, else return 1

We require the distributions of PK and PK′ to be identical.

Note that R1 controls the generation of the public keys and the main repro-
duction algorithm (R2) may take advantage of the state information produced
by the first algorithm. The existence of the third algorithm is required for the
simulation of decryption oracles for CCA secure schemes. It is easy to verify that

Theorem 6. The associated randomness reusing n-SM-PKE scheme of a di-
rectly reproducible and IND-atk secure encryption scheme is also secure in the
IND-atk sense. More precisely, any PPT attacker A against the randomness
reusing n-SM-PKE scheme can be used to build an attacker B against the base
scheme, such that:

AdvIND−atk
n−SM−PKE(A) ≤ AdvIND−atk

PKE (B).

The above notion of reproducibility, not only permits deriving tighter security
reductions, but also gives rise to a new test for detecting additional schemes
which allow randomness reuse. In fact, it can be shown that a modified version
of the escrow ElGamal encryption scheme is directly but not weakly reproducible
(see Appendix C).

Furthermore, unlike weak and full reproducibility, this new notion respects
the Fujisaki-Okamoto transformation [9] for building IND-CCA secure schemes,
as it does not explicitly handle the encrypted message. It therefore establishes a
new set of chosen-ciphertext secure single message multi-recipient schemes with
tight security reductions in the random oracle model.

Direct reproducibility also poses an interesting problem, which concerns public
key encryption schemes with chosen ciphertext security in the standard model.
In particular, the case of the Cramer-Shoup encryption scheme remains open,
as we were unable to construct the required reproduction algorithms. We leave
it as an open problem to find such an algorithm, or to design an analogous
reproducibility test which admits encryption schemes which are IND-CCA secure
in the standard model.
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A Proof of the Second Case of Lemma 3

Proof. We now prove the Lemma for the case

Pr[b̂ = 1|l = i ∧ b̄ = 0] = Pr[Expi−1,0(A) = 1].

The argument is similar to the previous case. We must show that the probability
distribution of the inputs presented to A is exactly the same in the scenarios
corresponding to both sides of the equation above. This is trivially true for the
public keys that A1 receives, since all of them are independently generated using
the correct algorithm. Regarding the challenge ciphertext that A2 gets, we start
by expanding the values of (C1, . . . , Cn).
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In Expi−1,0(A), we have Ĉ = EPKE(M0, P̂K; r) and

Cj = R(P̂K, Ĉ, M1, PKj , SKj) for 1 ≤ j ≤ i − 1

Cj = R(P̂K, Ĉ, M0, PKj , SKj) for i ≤ j ≤ n.

On the other hand, in B2(C̄, ŝ), given that l = i and b̄ = 0 we have C̄ =
EPKE(M0, PK; r) and

Ci = C̄

Cj = R(PK, C̄, M1, PKj , SKj) for 1 ≤ j ≤ i − 1
Cj = R(PK, C̄, M0, PKj , SKj) for i + 1 ≤ j ≤ n.

To show that the distributions are identical, we split the argument in three parts
and fix the values of all random variables, considering the case where the public
keys provided to A in both cases are the same, and that the implicit randomness
in both Ĉ and C̄ is the same r. We show that the resulting challenge ciphertexts
in both cases are exactly the same:

– j = i: Note that in the second scenario we have Ci = C̄, while in the first
scenario we have Ci = R(P̂K, Ĉ, M0, PKi, SKi). Since Ĉ encrypts M0, the result
of R is perfect and equal to EPKE(M0, PKi; r) = C̄.

– j < i: In this range, challenge components are outputs of R, but in this case
we cannot claim that they are identical without resorting to the properties of
R described in Definition 2 for different message reproduction, which ensure
that

R(P̂K, Ĉ, M1, PKj , SKj) = R(P̄K, C̄, M1, PKj , SKj)

as required.
– j > i: In this range, challenge components are identical in both scenarios:

they are perfect reproductions EPKE(M0, PKj ; r), since M0 is passed to R both
in encrypted and plaintext form.

This means that the second case of the Lemma follows. �

B Proof of Theorem 5

Proof. Let A denote an IND-CCA adversary against the generic construction
with non-negligible advantage. Modelling hash functions as random oracles, we
construct an algorithm B with non-negligible advantage in the OW-CPA game
for the n-SM-PKE. One-way security notion can be easily adapted to multi-
recipient schemes. Note that one-wayness of an n-SM-PKE is not necessarily
implied by the one-wayness of its base PKE [10]. However, since indistinguisha-
bility implies one-wayness and indistinguishability property is inherited from
the base scheme due to the wREP property, we do have that the n-SM-PKE is
OW-CPA. The concrete reduction is:

AdvOW−CPA
n−SM−PKE(A) ≤ AdvIND−CPA

n−SM−PKE(B) + ε1 ≤ nAdvIND−CPA
PKE (C) + ε2.
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Here ε1 and ε2 are negligible quantities, assuming that the message space has
a size super-polynomial in the security parameter. We omit the straightforward
details of the proof.

On receiving the n public keys for the OW-CPA game, B passes these values
on to algorithm A. During A’s first stage, algorithm B replies to A’s oracle
queries as follows:

– H queries: B maintains a list L ⊆ Mn−SM−PKE(I) × Rn−SM−PKE(I) which
contains at most qH pairs (M, r). On input of M , if (M, r) ∈ L then B
returns r, otherwise it selects r at random from the appropriate randomness
space, appends (M, r) to the list and returns r.

– KDF queries: B maintains a list LK ⊆ Mn−SM−PKE(I) × Kn−SK−KEM(I) which
contains at most qK + qD pairs (M, k). On input of M , if (M, k) ∈ LK then
B returns k, otherwise it selects k at random from the appropriate key space,
appends (M, k) to the list and returns k.

– Decapsulation queries: on input (C, PK), B checks for each (M, r) ∈ L if
EPKE(M, PK; r) = C; if such a pair exists, B calls the KDF simulation proce-
dure on value M and returns the result to A. Otherwise B returns ⊥.

At some point A will complete its first stage and return some state informa-
tion. At this point, B calls the outside challenge oracle, and obtains a challenge
ciphertext (C1, . . . , Cn) on some unknown M∗. Algorithm B now checks if A has
queried for decapsulation on a tuple (C�, PK�) during its first stage. If this is the
case, algorithm B terminates. Otherwise it generates a random K∗ and provides
this to A along with the challenge ciphertext.

In the second stage, B answers A’s oracle queries as in stage one. When A
terminates, B randomly returns a message from L or LK .

Now we analyse the probability that this answer is correct.
B’s execution has no chance of success (event SB) if it terminates at the end

of A’s first stage (event T ). Therefore:

Pr[SB] = Pr[SB ∧ ¬T ] = Pr[SB|¬T ] Pr[¬T ]

Note that the challenge encapsulation is independent of A’s view in the first
stage, so that A could only have queried decapsulation for one of the challenge
encapsulations by pure chance. However, the size of the valid encapsulation space
for each public key is the same as the message space. This means that the
probability that B continues to execute is

Pr[¬T ] = 1 − qD

M

where M = |Mn−SM−PKE(I)|.
Given that termination does not take place, B’s simulation could be imperfect

if one of the following events occur:

– Event E1: The adversary places a decapsulation query for a valid ciphertext,
and B returns ⊥.
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– Event E2: The adversary queries H or KDF for the unknown M∗ value.

Event E1 occurs if A finds a valid ciphertext without querying H to obtain
the randomness required to properly construct it. The probability of this is

Pr[E1] ≤ qDγn

R
,

where R = |Rn−SM−PKE(I)| and γn = γn(I) is the least upper bound such that
for every n-tuple (PKi)n

i=1, every M ∈ Mn−SM−PKE(I), every j ∈ {1, . . . , n} and
every C ∈ Cn−SM−PKE(I) we have

|{r ∈ Rn−SM−PKE(I) : [En−SM−PKE(M, (PKi)n
i=1; r)]j = C}| ≤ γn(I).

This follows from the fact that, since H is modelled as a random oracle, A can
only achieve this by guessing the randomness value. Moreover, the probability
that a given randomness generates a valid ciphertext is at most γn/R and there
are at most qD such queries.

Note that we can write

Pr[E1 ∨ E2] ≤ Pr[E1] + Pr[E2] ≤ qDγn

R
+ Pr[E2].

On the other hand, since A operates in the random oracle it can have no
advantage if event E1 ∨ E2 does not occur. Hence we can write

(1/2)AdvIND−CCA
n−SK−KEM(A) = Pr[SA] − 1/2

= Pr[SA ∧ (E1 ∨ E2)] + Pr[SA ∧ ¬(E1 ∨ E2)] − 1/2
≤ Pr[E1 ∨ E2] + 1/2 − 1/2

≤ Pr[E2] +
qDγn

R
.

Now:

AdvOW−CPA
n−SM−PKE(B) = Pr[SB] = Pr[SB|¬T ](1 − qD

M
)

=
1

|L| + |LK | Pr[E2](1 − qD

M
)

≥ 1
qH + qK + qD

(Pr[E2] − qD

M
).

and rearranging the terms

Pr[E2] ≤ (qH + qK + qD)AdvOW−CPA
n−SM−PKE(B) +

qD

M

Putting the above two results together we get:

AdvIND−CCA
n−SK−KEM(A) ≤ 2(qH + qK + qD)AdvOW−CPA

n−SM−PKE(B) + 2qD(
1
M

+
γn

R
).

�
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C Direct and Weak Reproducibility Separation

Let us consider a modified version of a scheme proposed by Boneh and Franklin
[6] known as escrow ElGamal. In this scheme the domain parameter is I :=
(p, g, h) where h = gt for t ← Z

∗
p. The key generation algorithm outputs (1/x, gx)

as the secret-public key pair for x ← Z
∗
p. The encryption algorithm on input a

message m and a public key gx returns (u, v) := ((gx)r, m · e(g, h)r) where r is
random in Z

∗
p. One is able to decrypt this ciphertext using the secret key 1/x

by computing m := v/e(u, h1/x). Here e : G × G → GT is a non-degenerate
efficiently computable bilinear map [6].

The randomness reuse properties of this scheme are as follows.

Theorem 7. The modified escrow ElGamal encryption scheme given above is
(1) IND-CPA under the decisional bilinear Diffie–Hellman assumption; (2) di-
rectly reproducible; and (3) not weakly reproducible if the computational Diffie–
Hellman assumption holds in G.

Proof. (1) The security proof is analogous to that of escrow ElGamal.
(2) The direct reproducibility algorithm R = (R1, R2, R3) operates as follows.

Algorithm R1 on input a public key gx returns ((gx)s, s) where s is a random
element in Z

∗
p. The algorithm R2 on input a ciphertext (u, v) = (gxr, m ·e(g, h)r)

and state information s returns (us, v). It is easily seen that R produces a valid
encryption of m under (gx)s. Algorithm R3 returns (u1/s, v). Note that the public
key (gx)s is identically distributed to public keys returned by the key generation
algorithm.

(3) Let (g, ga, gb) ∈ G3 denote the CDH problem instance. Our goal is to
compute gab. The reproduction algorithm on input

(p, g, h, gx, grx, m · e(g, h)r, m, gy, 1/y)

outputs (gry, m · e(g, h)r). To compute gab we pass to R the input

(p, ga, g, g, gb, e(gb, ga), 1, ga, 1).

This could be written as:

(p, g′, g′1/a, g′1/a, g′b·1/a, e(g′, g′1/a)b, 1, g′, 1),

where g′ = ga. Note again that since R succeeds with probability 1, it will run
correctly on the above input instance. Here implicitly we have x = 1/a, and
from rx = b/a we have r = b, and m = 1. Therefore the first component of the
output will be (g′1)b = gab. �
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Abstract. There is an intuitive connection between signcryption and
one-pass key establishment. Although this has been observed previously,
up to now there has been no formal analysis of this relationship. The
main purpose of this paper is to prove that, with appropriate security
notions, one-pass key establishment can be used as a signcryption KEM
and vice versa. In order to establish the connection we explore the def-
initions for signcryption (KEM) and give new and generalised defini-
tions. By making our generic construction concrete we are able to provide
new examples of a signcryption KEM and a one-pass key establishment
protocol.

Keywords: Key establishment, Signcryption, Signcryption KEM.

1 Introduction

Zheng [1] introduced the notion of signcryption as an asymmetric cryptographic
primitive that provides both privacy and authenticity at greater efficiency than
the generic composition of signature and encryption schemes. A seemingly un-
related cryptographic primitive is key establishment which aims to allow parties
to establish a shared key that can be used to cryptographically protect subse-
quent communications. Most key establishment protocols are interactive, but
many such protocols provide simplified one-pass versions which only use a single
message. One-pass key establishment provides the opportunity for very efficient
constructions, even though they will typically provide a lower level of security
than interactive protocols.

Zheng [2] later observed that a signcryption scheme can be used as a key
transport protocol by simply choosing a new key and sending it in a signcrypted
message. This intuitively gives the desired properties for key establishment since
the signcryption gives assurance to the sender that the key is available only
to the recipient, and assurance to the recipient that the key came from the
sender. However, this work contains neither a security model nor a proof for
this construction and there remains currently no formal treatment. Since key
establishment is notoriously tricky to get right, it is important to decide exactly
what security properties such a construction can provide. The main purpose

S.D. Galbraith (Eds.): Cryptography and Coding 2007, LNCS 4887, pp. 277–301, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



278 M.C. Gorantla, C. Boyd, and J.M. González Nieto

of this paper is to define the appropriate notions of security and show how
signcryption and one-pass key establishment can be related under those notions.

Security for signcryption. Since the introduction of signcryption, dif-
ferent definitions of security have emerged. An, Dodis and Rabin [3] divided
security notions for signcryption into two types: outsider security assumes that
the adversary is not one of the participants communicating while insider security
allows the adversary to be one of the communicating parties. Insider security is a
stronger notion than outsider security as it protects the authenticity of a sender
from a malicious receiver and privacy of a receiver from a malicious sender.
Therefore insider security implies the corresponding notion for outsider security.
The notions of outsider security and insider security with respect to authenticity
are similar to third-person unforgeability and receiver unforgeability defined for
asymmetric authenticated encryption [4].

Because signcryption is intended to include functionality similar to that of
digital signatures, it is natural that non-repudiation is a desirable property. Non-
repudiation requires insider security since the sender of a signcrypted message
must be prevented from showing that it could have been formed by the recipi-
ent of that message. A signcryption scheme with only outsider security cannot
provide non-repudiation [3,5]. For key establishment there is no need for non-
repudiation — it is never required for a single party to take responsibility for the
shared key. On the other hand, a commonly required property for key establish-
ment is forward secrecy which ensures that if the long-term key of a participant in
the protocol is compromised then previously established keys will remain secure.
We can regard forward secrecy as analogous to insider security in signcryption
with respect to confidentiality. Compromise of the sender’s private key should
not allow an adversary to obtain previously signcrypted messages.

In addition to forward secrecy, another common security requirement for key
establishment is security against compromise of ephemeral protocol data. This
is not considered in the existing models for signcryption schemes and so it is not
possible, in general, to convert from a signcryption scheme to a key establishment
protocol with this stronger security notion. We will argue later that there is good
reason that signcryption schemes should consider security against compromise
of ephemeral data. In particular this observation allows us to explain a potential
weakness observed by Dent in one of his own constructions [6].

Signcryption KEMs. Cramer and Shoup [7] formalised the concept of hy-
brid encryption schemes which securely use public key encryption techniques to
encrypt a session key, and symmetric key encryption techniques to encrypt the
actual message. This hybrid construction has a key encapsulation mechanism
(KEM) and a data encapsulation mechanism (DEM) as its underlying tools.
A KEM is similar to a public key encryption scheme except that it is used to
generate a random key and its encryption. In a series of papers, Dent [8,6,9]
extended this hybrid paradigm to signcryption, resulting in the construction of
signcryption KEM and signcryption DEM with different security notions.

Although we could use plain signcryption schemes to provide one-pass key
establishment as suggested by Zheng [2], signcryption KEMs seem better suited
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to the job. This is because they do just what we need by providing a new random
key, yet have the potential to be more efficient than plain signcryption. Note,
however, that the remarks regarding the differences in security models between
signcryption and key establishment apply equally when signcryption KEMs are
considered in place of plain signcryption.

Contributions. We provide new definitions of security for signcryption and
subsequently for signcryption KEMs. We then show the suitability of these
new notions in deriving one-pass key establishment protocols from signcryption
KEMs. Generic constructions of signcryption KEMs from one-pass key establish-
ment protocols and vice versa are proposed. These constructions are instantiated
using existing schemes; in particular we use HMQV [10], the most efficient cur-
rently known key agreement protocol with a proof of security, to derive a new
signcryption KEM with strong security properties. One of the main observations
of our paper is that the security models for key establishment are stronger than
those normally accepted for signcryption. Moreover, the stronger security seems
to be just as appropriate for signcryption as it is for key establishment. Specific
contributions of the paper are:

– new definitions for signcryption (KEM)s;
– generic construction from one-pass key establishment to signcryption and

vice versa;
– the first secure signcryption KEM with forward secrecy;
– an attack on a signcryption KEM of Dent [6].

The remainder of this introduction briefly surveys related work and outlines
the Canetti–Krawczyk model for key establishment. Section 2 then considers the
current definitions of security for signcryption and how they can be strengthened.
Section 3 examines the outsider secure signcryption KEMs designed by Dent [6].
The generic construction of signcryption KEM from one-pass key establishment
is covered in Section 4 while the reverse construction is covered in Section 5.

1.1 Related Work

An et al. [3] defined security notions for signcryption schemes as insider and
outsider security in the two-user setting. They also described how to extend
these notions to the multi-user setting. Baek et al. [11] independently attempted
to provide similar notion of security for signcryption, but their model was not
completely adequate. Recently, the same authors [12] extended these notions to
match the corresponding definitions given by An et al. However, their security
notions are still not complete, as discussed in Section 2.1.

Zheng [2] informally showed how a signcryption scheme can be used as a key
transport protocol. Dent [8,6] and Bjørstad and Dent [13] discussed how a sign-
cryption KEM can be used as a one-pass key establishment protocol. Bjørstad
and Dent [13] proposed the concept of signcryption tag-KEM and claimed that
better key establishment mechanisms can be built with this. However, none of
these papers formally defined security in a model that is suitable for key es-
tablishment protocols. Moreover, the confidentiality notion defined for all these
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KEMs does not offer security against insider attacks. Insider security for confi-
dentiality enables achieving forward secrecy i.e. the compromise of the sender’s
private key does not compromise the confidentiality of signcryptions created us-
ing that key [3]. However, this has been ignored or its absence is treated as a
positive feature called “Past Message Recovery” in the earlier work [1,12].

1.2 The Canetti–Krawczyk Model

To analyse the security of key establishment protocols, we use the Canetti-
Krawczyk (CK) model [14,15], which we briefly describe here. The CK model has
primarily been used for multi-pass key establishment protocols, but it can also
be used to analyse one-pass key establishment protocols without modification as
shown by Krawczyk [10].

In the CK model a protocol π is modelled as a collection of n programs running
at different parties, P1, . . . , Pn. Each invocation of π within a party is defined as
a session, and each party may have multiple sessions running concurrently. The
communications network is controlled by an adversary Aπ, which schedules and
mediates all sessions between the parties. When first invoked within a party,
π calls an initialization function that returns any information needed for the
bootstrapping of the cryptographic authentication functions (e.g. private keys
and authentic distribution of other parties’ public keys). After this initialization
stage, the party waits for activation. Aπ may activate a party Pi by means of
a send(πs

i,j , λ) request where λ is an empty message1. This request instructs Pi

to commence a session with party Pj . In response to this request Pi outputs a
message m intended for party Pj . s is a session identifier unique amongst all
sessions between Pi and Pj . In this paper, where we only consider one-pass key
establishment, we define the session-id as the tuple (Pi, Pj , m), where m is the
unique message sent by Pi to Pj . The adversary activates the receiver Pj with
an incoming message using the request send(πs

j,i, m).
Aπ is responsible for transmitting messages between parties, and may fab-

ricate or modify messages when desired. Upon activation, the parties perform
some computations and update their internal state. Two sessions are said to be
matching sessions if their session-ids are identical.

In addition to the activation of parties, Aπ can perform the following queries.

1. corrupt(Pi). With this query Aπ learns the entire current state of Pi including
long-term secrets, session internal state and unexpired session keys. From this
point on, Aπ may issue any message in which Pi is specified as the sender
and play the role of Pi. The adversary is allowed to replace the public key
of a corrupted user by any value of its choice.

2. session-key(πs
i,j). This query returns the unexpired session key (if any) ac-

cepted by Pi during a given session s with Pj .

1 Here we use the notation of Bellare and Rogaway [16] rather than the original no-
tation of CK model, which uses a query named establish-session to achieve the same
result.
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3. session-state(πs
i,j). This query returns all the internal state information of

party Pi associated to a particular session s with Pj ; the state information
does not include the long term private key.

4. session-expiration(πs
i,j). This query can only be performed on a completed

session. It is used for defining forward secrecy and ensures that the corre-
sponding session key is erased from Pi’s memory. The session is thereafter
said to be expired;

5. test-session(πs
i,j). To respond to this query, a random bit b is selected. If

b = 0 then the session key is output. Otherwise, a random key is output
chosen from the probability distribution of keys generated by the protocol.
This query can only be issued to a session that has not been exposed. A
session is exposed if the adversary performs any of the following actions:
– a session-state or session-key query to this session or to the matching

session, or
– a corrupt query to either partner before the session expires at that part-

ner.

Security is defined based on a game played by the adversary. In this game Aπ

interacts with the protocol. In the first phase of the game, Aπ is allowed to acti-
vate sessions and perform corrupt, session-key, session-state and session-expiration
queries as described above. The adversary then performs a test-session query to
a party and session of its choice. The adversary is not allowed to expose the
test-session. Aπ may then continue with its regular actions with the exception
that no other test-session query can be issued. Eventually, Aπ outputs a bit b′ as
its guess on whether the returned value to the test-session query was the session
key or a random value, then halts. Aπ wins the game if b = b′. The definition of
security is as follows.

Definition 1. A key establishment protocol π is called session key (SK-) secure
with forward secrecy if the following properties are satisfied for any adversary
Aπ.

1. If two uncorrupted parties complete matching sessions then they both output
the same key.

2. The probability that Aπ guesses correctly the bit b is no more than 1
2 plus a

negligible function in the security parameter.

We define the advantage of Aπ to be twice the probability that Aπ wins,
minus one. Hence the second requirement will be met if the advantage of Aπ is
negligible.

As discussed by Krawczyk [10] it is impossible to achieve forward secrecy
in less than three rounds with any protocol authenticated via public keys and
without previously established shared state between the parties. With one-pass
key establishment, using public keys and with no previous shared secret state,
the best that can be achieved is sender forward secrecy, whose definition is the
same as above, except that sessions can only be expired at the sender. Canetti
and Krawczyk also provide a definition of SK-security without forward secrecy,
where the adversary is not allowed to expire sessions at all.
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As mentioned above, for the one-pass key establishment protocols in this
paper we define the session-id to be the concatenation of the identities of the
peers and the unique message sent in that session. This formulation of session-
id prevents the adversary from replaying the message from one protocol in a
different session since the model insists that each session has a unique session-
id. This may be seen as an artificial way of preventing replay attacks which
are an inherent limitation of one-pass key establishment protocols: in reality
an adversary can simply replay the single message of the protocol and it will
be accepted by the recipient unless it includes some time-varying value. This
situation could be addressed by including a time-stamp to uniquely identify a
session, and assuming that all parties have access to a universal time oracle [17].
We do not explore that approach further in this paper.

2 Security Definitions

We now present definitions of security for signcryption schemes that complement
those of Baek et al. [12]. We then extend these definitions to arrive at new notions
of security for signcryption KEMs in the multi-user setting.

2.1 New Security Notions for Signcryption

Asigncryption schemeSC is specifiedbyfivepolynomial-timealgorithms: common-
key-gen, sender-key-gen, receiver-key-gen, signcryption and unsigncryption.

common-key-gen: is a probabilistic polynomial time (PPT) algorithm that takes
the security parameter k as input and outputs the common/public parame-
ters params used in the scheme. These parameters include description of the
underlying groups and hash functions used.

sender-key-gen: is a PPT algorithm that takes params as input and outputs the
sender’s public-private key pair (pks, sks) used for signcryption.

receiver-key-gen: is a PPT algorithm that takes params as input and outputs
the receiver’s public-private key pair (pkr, skr) used for unsigncryption.

signcryption: is a PPT algorithm that takes params, a sender’s private key sks,
a receiver’s public key pkr and message m to be signcrypted as input. It
returns a signcryptext C.

unsigncryption: is a deterministic polynomial-time algorithm that takes params,
a sender’s public key pks, a receiver’s private key skr and a signcryptext C
as input. It outputs either a plaintext m or an error symbol ⊥.

For SC to be considered valid it is required that unsigncryption(pks, skr, sign-
cryption(sks, pkr, m)) = m for all sender key pairs (pks, sks) and receiver key
pairs (pkr, skr).

For all the security notions defined in this paper we distinguish two users
Alice and Bob as sender and receiver respectively. Depending on the notion of
security one of these users, or both, will be adversary’s target.

We define insider and outsider security for signcryption schemes in the multi-
user setting based on the discussion given by An et al. [3]. It is natural to consider
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the security of a signcryption scheme in the multi-user setting where Alice can
signcrypt messages for any user including Bob, and any user including Alice
can signcrypt messages for Bob. Hence, in this model the adversary is given the
power to obtain signcryptions of Alice created for any user through a flexible
signcryption oracle (FSO). Similarly, the adversary is also given access to a flexi-
ble unsigncryption oracle (FUO) that unsigncrypts a given signcryptext created
for Bob by any user. Because of these additional adversarial powers, security in
the two-user setting does not imply security in the multi-user setting [12].

In any signcryption scheme users employ a private key for two purposes:
for signcrypting messages sent to other users and for unsigncrypting messages
received from other users. The private keys used for each of these purposes,
along with their corresponding public keys, may be the same or they may be
different. This is much the same as the option to use the same, or different,
keys for decryption and for signing. In keeping with common practice we will
assume that each key pair is used for a single purpose. Therefore we specify that
all users have two different key pairs for signcryption and for unsigncryption. In
contrast, An et al. [3] assumed that a single key pair is used for both signcryption
and unsigncryption. Their security model therefore requires giving the adversary
access to additional oracles for unsigncrypting by Alice and signcrypting by Bob.
To the same end, our model allows the receiver key pair of Alice and sender key
pair of Bob to be given to the adversary.

Baek et al. [12] defined only outsider security for confidentiality and insider
security for unforgeability in the multi-user setting. In this section we make the
desired security notions for signcryption complete by defining insider security for
confidentiality and outsider security for unforgeability in the multi-user setting.
We assume that the challenger fixes the set of users {U1, . . . , Un} and their key
pairs before its interaction with the adversary2. Note that the security notions
defined by Baek et al. [12] implicitly assume the same. The adversary is given
all the public keys of the users initially so that it can choose the public keys
from the given set when accessing the oracles. One can relax this restriction in
our definitions by allowing the adversary to query the FSO and/or FUO with
arbitrarily chosen public keys.

Let (pkA, skA) be the public-private key pair used by Alice for signcryption
and let (pkB, skB) be the public-private key pair used by Bob for unsigncryption.
The behaviour of Alice’s FSO and Bob’s FUO is described below:

FSO: On the input (pkr, m), FSO returns a signcryptext C generated using
skA and the public key pkr on the message m. The adversary may choose
Bob’s public key pkB as the receiver public key, i.e., pkr = pkB.

FUO: On the input (pks, C), FUO returns a plaintext m or a ⊥ symbol after
performing unsigncryption on C using skB and the public key pks. The
adversary may choose pks to be the public key of Alice i.e. pks = pkA.

For the sake of completeness, we first present our new definition for insider
confidentiality and then briefly describe the definition for outsider confidentiality
2 This can be seen as a way of preventing the adversary from registering replaced

public keys with the certifying authority for a particular user.
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given by Baek et al. [12]. Similarly, we present our new definition for outsider
unforgeability and then strengthen the definition for insider unforgeability given
by Baek et al. [12].

Insider confidentiality. An insider adversary ACCA against confidentiality of
SC is assumed to have knowledge of all key pairs except Bob’s private key used
for unsigncryption. The goal of ACCA is to break the confidentiality of messages
signcrypted for Bob by any user. ACCA can issue FUO(pks, C) for any sender’s
public key pks and a signcryptext C. Alice’s FSO can be simulated by ACCA

itself with its knowledge of the corresponding private key. We define this security
notion as FUO-IND-CCA2 that simulates chosen ciphertext attacks against SC.

– Challenge Phase: After adaptively asking the FUO queries, ACCA outputs
two equal length messages m0, m1 and a public key pks′ and submits them
to the challenger. The challenger chooses b ∈R {0, 1} and gives ACCA a chal-
lenge signcryptext C∗ created on mb using the private key sks′ corresponding
to pks′ and Bob’s public key pkB .

ACCA can continue asking the FUO queries except the trivial FUO(pks′ , C∗).
However, an FUO query on C∗ using a public key pks �= pks′ is still allowed.

– Guess Phase: Finally, ACCA outputs a bit b′ and wins the game if b′ = b.

The advantage of ACCA in winning the FUO-IND-CCA2 game is:

AdvACCA,SC
def
= 2 · Pr[b′ = b] − 1

Outsider confidentiality. An adversary against outsider confidentiality of SC
is assumed to know all private keys except Alice’s private key used for signcryp-
tion and Bob’s private key used for unsigncryption. The goal of the adversary in
this notion is to break the confidentiality of messages signcrypted by Alice for
Bob. The outsider confidentiality notion FSO/FUO-IND-CCA2 [12] gives the
adversary access to both FSO and FUO. After adaptively asking the FSO and
FDO queries, the challenge and guess phases are carried on as described above.
The advantage of the adversary in winning the FSO/FUO-IND-CCA2 game is
also defined in the same way as above.

Outsider unforgeability. An outsider adversary ACMA against unforgeability
of SC is assumed to know all private keys except Alice’s private key used for
signcryption and Bob’s private used for unsigncryption. The goal of ACMA is
to forge a valid signcryptext created by Alice for Bob. ACMA is given access to
both FSO and FUO.

After querying the FSO and FUO adaptively, ACMA outputs a forgery C∗. A
weak (conventional) notion of unforgeability requires C∗ to be a valid signcryp-
tion created by Alice for Bob on a new message m∗ i.e. m∗ was never queried to
FSO. For the notion of strong unforgeability C∗ has to be a valid signcryption of
Alice created for Bob on a message m∗ such that C∗ was never an output of FSO,
although FSO(m∗, pkr) might have been issued earlier, even for pkr = pkB. We
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call this notion FSO/FUO-sUF-CMA for strong unforgeability against chosen
message attacks by ACMA. The advantage of ACMA in winning the FSO/FUO-
sUF-CMA game is the probability of ACMA outputting such a C∗.

Insider unforgeability. An adversary against insider unforgeability of SC is
assumed to know all the private keys except Alice’s private key used for sign-
cryption. The goal of adversary in this notion is to produce a valid forgery of a
signcryptext created by Alice for any other user. The insider unforgeability no-
tion FSO-UF-CMA [12] gives the adversary access to FSO, as FUO can be sim-
ulated by the adversary itself. After querying the FSO adaptively, the adversary
outputs a forgery (C∗, pk∗

r) for any receiver’s public key pk∗
r . The FSO-UF-CMA

notion does not require the message m∗ to be new although only FSO(m∗, pkr),
for pkr �= pk∗

r queries are allowed. We strengthen this notion to FSO-sUF-CMA
by allowing FSO(m∗, pkr) even for pkr = pk∗

r .

2.2 New Security Notions for Signcryption KEM

A signcryption KEM SK is specified by five polynomial-time algorithms: common-
key-gen, sender-key-gen, receiver-key-gen, encapsulation and decapsulation. The al-
gorithms common-key-gen, sender-key-gen and receiver-key-gen are the same as
those defined in Section 2.1. The sender’s key pair (pks, sks) and the receiver’s
key pair (pkr, skr) are now used for encapsulation and decapsulation respectively.

encapsulation: is a PPT algorithm that takes params, a sender’s private key sks

and a receiver’s public key pkr as input. It returns the pair (K, C), where,
K is a symmetric key and C is its encapsulation.

decapsulation: is a deterministic polynomial-time algorithm that takes params,
a sender’s public key pks, a receiver’s private key skr and an encapsulation
C. It outputs either a symmetric key K or an error symbol ⊥.

For SK to be valid it is required that if (K, C) = encapsulation(sks, pkr), then
decapsulation(pks, skr, C) = K for all sender key pairs (pks, sks) and receiver
key pairs (pkr, skr).

Dent [8,6,9] defined both insider and outsider security notions for signcryption
KEMs in the two-user setting. He also provided an informal description of how
to define security for signcryption KEMs in the multi-user setting [8]. Recently,
Yoshida and Fujiwara [18] defined security notion for signcryption Tag-KEMs in
the multi-user setting. Here, we present new notions of security for signcryption
KEMs in the multi-user setting building on the definitions in Section 2.1.

In the security model for a signcryption KEM in the multi-user setting the
adversary is given the power to obtain encapsulations of Alice created for any
user through a flexible encapsulation oracle (FEO). The adversary is also given
access to a flexible decapsulation oracle (FDO) that decapsulates a given encap-
sulation created for Bob by any user. Let (pkA, skA) be the public-private key
pair used by Alice for encapsulation and let (pkB, skB) be the public-private key
pair used by Bob for decapsulation.

The challenger initially fixes the set of users {U1, . . . , Un} and their key pairs.
The adversary is given all the public keys of the users initially so that it can
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choose the public keys from the given set when accessing the oracles. The be-
haviour of Alice’s FEO and Bob’s FDO is described below.

FEO: On receiving pkr, FEO returns a pair (K, C), where C is an encapsulation
of K generated using skA and pkr. The adversary may choose pkB as the
receiver’s public key, i.e., pkr = pkB.

FDO: On receiving (pks, C), FDO returns a symmetric key K or a ⊥ symbol
after performing decapsulation on C using skB and pks. The adversary may
choose pkA as the sender’s public key i.e. pks = pkA.

Insider confidentiality. An insider adversary ACCA against confidentiality
of SK is assumed to have knowledge of all key pairs except Bob’s private key
used for decapsulation. The goal of ACCA is to break the confidentiality of
encapsulations created for Bob by any user. It is given access only to FDO as
the oracle FEO can be simulated with the knowledge of Alice’s private key used
for encapsulation. We call this notion of security FDO-IND-CCA2.

– Challenge Phase: After adaptively asking the FDO queries, ACCA outputs
a public key pks′ . The challenger generates a valid symmetric key, encap-
sulation pair (K0, C

∗) using the private key sks′ corresponding to pks′ and
Bob’s public key pkB. It selects a key K1 randomly from the symmetric key
distribution. It then chooses b ∈R {0, 1} and gives (Kb, C

∗) as the challenge.

ACCA can continue its execution except asking the FDO(pks′ , C∗) query that
trivially decides the guess. However, an FDO query on C∗ using a public key
pks �= pks′ is still allowed.

– Guess Phase: Finally, ACCA outputs a bit b′ and wins the game if b′ = b.

The advantage of ACCA in winning the FDO-IND-CCA2 game is

AdvACCA,SK
def
= 2 · Pr[b′ = b] − 1

Outsider confidentiality. For outsider confidentiality the adversary is as-
sumed to know all the private keys except Alice’s private key used for encapsu-
lation and Bob’s private key used for decapsulation. The goal of the adversary
in this notion is to break the confidentiality of encapsulations created by Alice
for Bob. The adversary must be given access to both FEO and FDO. We call
this notion FEO/FDO-IND-CCA2. After adaptively asking the FEO and FDO
queries, the challenge and guess phases are carried on as described above. The
advantage of an adversary in winning the FEO/FDO-IND-CCA2 game is also
defined in the same way as above.

Outsider unforgeability. An outsider adversary ACMA against unforgeability
of SK is assumed to know all private keys except Alice’s private key used for
encapsulation and Bob’s private used for decapsulation. The goal of ACMA is
to forge a valid symmetric key and encapsulation pair (K∗, C∗) such that C∗ is
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an encapsulation of K∗ created by Alice for Bob. It is given access to both FEO
and FDO.

After querying FEO and FDO adaptively, ACMA produces a forgery (K∗, C∗).
It wins the game if decapsulation(pkA, skB, C∗) = K∗ �= ⊥. The trivial restriction
for (K∗, C∗) to be considered valid is that (K∗, C∗) was never an output of
FEO. We call this notion FEO/FDO-sUF-CMA for strong unforgeability against
outsider attacks. The advantage of ACMA in winning the FEO/FDO-sUF-CMA
game is the probability of ACMA outputting such a (K∗, C∗).

Insider unforgeability. An insider adversary against unforgeability of SK is
assumed to know all the private keys except Alice’s private key used for encapsu-
lation. The goal of the adversary in this notion is to forge a valid encapsulation
created by Alice to any other user. It is given access only to FEO as all keys
for decapsulation are known to the adversary. We call this notion FEO-sUF-
CMA for strong unforgeability against insider attacks. After adaptively querying
the FEO, the adversary outputs a forgery (K∗, C∗, pk∗

r ). It wins the FEO-sUF-
CMA game if decapsulation(pkA, sk∗

r , C∗) = K∗ �= ⊥. The trivial restriction for
(K∗, C∗, pk∗

r ) to be considered valid is that (K∗, C∗) was never an output of
FEO. The advantage of the adversary in winning the FEO-sUF-CMA game is
the probability of outputting such a (K∗, C∗, pk∗

r).

2.3 On the Unforgeability Notion for Signcryption KEMs

Dent [6] defined a different notion, called Left-or-Right (LoR) security, for out-
sider unforgeability of signcryption KEMs. He showed that an adversary that
can output a valid forgery (K∗, C∗) under the notion described in the previous
section can be efficiently turned into another adversary that can win the LoR
game. Dent pointed out that LoR security is a strong requirement for outsider
secure signcryption KEMs. An outsider secure signcryption KEM under our def-
inition can be combined with an outsider secure signcryption DEM in the notion
defined by Dent [6] to achieve an outsider secure hybrid signcryption scheme.
However, this composition may not yield a tight reduction when compared to
the hybrid signcryption scheme that is composed of an LoR secure signcryption
KEM and an outsider secure signcryption DEM. In our generic constructions we
show that our notion FEO/FDO-sUF-CMA is enough when relating one-pass
key establishment protocols with signcryption KEMs. One may still use an LoR
secure signcryption KEM to derive a one-pass key establishment protocol, as
LoR security guarantees security under the FEO/FDO-sUF-CMA notion.

We emphasise that an insider secure hybrid signcryption scheme can never be
guaranteed using the definition of insider unforgeability for signcryption KEM
described in the previous section. Dent [9] described the impossibility of achiev-
ing an insider secure hybrid signcryption scheme by generic composition of such
a signcryption KEM and an insider secure signcryption DEM. The difficulty is
that a signcryption KEM that generates symmetric keys and encapsulations in-
dependent of the message to be signcrypted cannot provide the non-repudiation
service and thus cannot be insider secure. But our definitions of security for
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insider security of signcryption KEMs are still useful when one observes their
connection with one-pass key establishment protocols. A signcryption KEM that
is insider confidential in our definition can be used to derive a one-pass key estab-
lishment protocol that provides sender forward secrecy. Similarly, we speculate
that a signcryption KEM that is insider unforgeable in our definition can be
turned into a one-pass key establishment protocol that provides resistance to
key compromise impersonation (KCI) attacks even when the receiver’s private
key is compromised. The latter observation is yet to be explored formally.

3 Outsider Secure Signcryption KEMs

Dent [6] proposed an outsider secure signcryption KEM called elliptic curve
integrated signcryption scheme KEM (ECISS-KEM1) based on the ECIES-KEM
[19]. A potential problem with the ECISS-KEM1 was identified by Dent who then
proposed an improvement that is claimed to overcome this problem, but without
a proof of security. Both the schemes are described below.

3.1 ECISS-KEM1

Let (G, P, q) be the system parameters, where G is a large additive cyclic group of
prime order q and P is an arbitrary generator of G. Let (Ps = sP, s) and (Pr =
rP, r) be the public-private key pairs of the sender and receiver respectively,
where s, r ∈R Z∗

q . ECISS-KEM1 is described in Figure 1. The scheme uses a hash
function that outputs a key of desired length. ECISS-KEM1 is proven secure by
Dent in the two-user setting against outsider security (for both confidentiality
and integrity) assuming the hardness of CDH problem.

– Encapsulation
1. Choose an element t ∈R Z∗

q

2. Set K = Hash(sPr + tP )
3. Set C = tP
4. Output (K, C)

– Decapsulation
1. Set K = Hash(rPs + C)
2. Output K

Fig. 1. ECISS-KEM1

3.2 Potential Problems with Ephemeral Data

Dent discussed a potential weakness with the scheme ECISS-KEM1 as follows.
If an attacker is ever to obtain sPr + tP (through a temporary break-in), the
component sPr can be recovered easily. This means that the adversary can in-
definitely impersonate the sender.

It is interesting that Dent identified this as a problem even though it is not
recognised as one by any of the current security models for signcryption. On the
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other hand, we can see that this capability of the adversary to obtain ephemeral
protocol data has already been known in the key establishment models for many
years. If the KEM is used to build a one-pass key agreement protocol, then in the
Canetti–Krawczyk model described in Section 1.2 the session-state query allows
the adversary to obtain sPr + tP and hence break the protocol.

We would argue that the plausibility of such an attack, as well as its con-
sequences, are equally valid for a signcryption KEM as for a key establishment
protocol. Therefore we suggest that session-state queries can be usefully added to
the signcryption security model to give a useful stronger notion of security. The
feasibility of session-state queries will certainly vary according to the application
scenario. Factors that might influence the feasibility include the security of stor-
age during processing and the quality of practical random number generators. It
may be argued that applications such as signcryption or one-pass key establish-
ment are of limited vulnerability to session-state queries since local values can
be erased immediately once they are used. In contrast, two-pass protocols often
require some ephemeral values to be stored until interaction with a protocol peer
are completed.

3.3 ECISS-KEM2

Having recognised the problem with ECISS-KEM1, Dent proposed another sign-
cryption KEM (ECISS-KEM2). The system parameters, key pairs and hash func-
tion are the same as those in ECISS-KEM1. The symmetric key in the encapsu-
lation algorithm of ECISS-KEM2 is computed as K = Hash(sPr + tPr) and its
encapsulation is C = tP . Given an encapsulation, the symmetric key can be re-
covered using the deterministic decapsulation algorithm as K = Hash(rPs+rC).

Dent argued that even if an attacker discovers the value sPr + tPr, it would
help in recovering only a single message for which the hashed material is used to
produce the symmetric key. This is because it is not easy to compute sPr from the
discovered value and C. Although the security of the scheme is stated informally,
Dent claimed that a proof can be given with a non-standard security assumption.
However, the attack below enables an active adversary to impersonate the sender
to any receiver indefinitely.

Attack on ECISS-KEM2. An active adversary calculates C∗ as P − Ps and
sends it to the receiver as a message from a sender with the public key Ps.
This forces the receiver to compute shared key as K = Hash(rPs + rC∗) =
Hash(rsP + r(P − sP )) = Hash(rsP + rP − rsP ) = Hash(Pr), which can easily
be computed by the adversary. Now, the adversary can use a DEM along with
ECISS-KEM2 and signcrypt messages as having come from the original sender.
The attack is possible because the random element chosen in the encapsulation
algorithm and the static private key of the sender are not combined in a way that
makes eliminating them from the hashed material difficult. This attack directly
violates the Left or Right security defined by Dent for outsider unforgeability.
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3.4 ECISS-KEM1 in Multi-user Setting

We slightly modify ECISS-KEM1 to work in a multi-user environment as shown
in Figure 2. This new version has the same potential problems described in
Section 3.2. As suggested by An et al. [3], the identities of the users are now
embedded in the encapsulation and decapsulation processes.

– Encapsulation
1. Choose C ∈R G
2. Set K = Hash(Ŝ, R̂, sPr + C)
3. Output (K, C)

– Decapsulation
1. Set K = Hash(Ŝ, R̂, rPs + C)
2. Output K

Ŝ, R̂ represent the identities of the sender S and receiver R respectively.

Fig. 2. ECISS-KEM1 in the multi-user setting

Theorem 1. ECISS-KEM1 in the multi-user setting is secure in the outsider
unforgeability notion in the random oracle model assuming hardness of the Gap
Diffie Hellman (GDH) problem in G.

Theorem 2. ECISS-KEM1 in the multi-user setting is secure in the outsider
confidentiality notion in the random oracle model assuming hardness of the GDH
problem in G.

The proof of Theorem 1 is provided in Appendix A. The proof of Theorem 2 is
very similar to that of Theorem 1 and we omit the details.

4 Signcryption KEM from One-Pass Key Establishment

This section first discusses how a one-pass key establishment protocol π can be
used as a signcryption KEM SK. A proof of the generic construction is also
provided.

The session key computed by a sender in π can be used as the symmetric
key of SK. The outgoing message of π becomes the encapsulation of the key.
The session key computation process at the receiver end in π can be used as the
decapsulation algorithm to retrieve the symmetric key.

Theorem 3. If π is a one-pass key establishment protocol SK-secure with sender
forward secrecy in the CK model, then it can be used as a signcryption KEM that
is secure in the insider confidentiality and outsider unforgeability notions.

Proof. To prove the theorem it is enough if we show that if SK is not secure in
the insider confidentiality or outsider unforgeability notion, then π is also not
secure in the CK model. Given an adversary ACCA against insider confidential-
ity or ACMA against outsider unforgeability with non-negligible advantage, we
construct an adversary Aπ against SK-security of π in the CK model that can
distinguish a real session key from a random number in polynomial time.



On the Connection Between Signcryption and One-Pass Key Establishment 291

Constructing Aπ from ACMA: We start by assuming the existence of ACMA

against outsider unforgeability, with a non-negligible advantage εu. Then, we
prove that Aπ can distinguish a real session key from a random value with
the same advantage using ACMA as subroutine. The running time of Aπ is
t1 ≤ tu + (nfeo + nfdo)(ts + tk), where tu is the time required for ACMA to
forge SK, nfeo and nfdo are the number of FEO and FDO queries issued
by ACMA respectively and ts and tk are the response times for send and
session-key queries respectively. The view of ACMA is simulated as below:

Aπ allows ACMA to choose two users UA and UB from a set of users
{U1, . . . , Un}. It then corrupts all the parties except UA and UB and gives
their key pairs to ACMA. This enables ACMA to choose public keys from
the given set when accessing UA’s FEO and UB’s FDO. The queries asked
by ACMA are answered as below:
– FEO Queries: For an FEO query asked by ACMA with input pkj , the

adversary Aπ initiates a session by issuing a send(πs
A,j , λ) query and

obtains the parameter C computed by the oracle πs
A,j . It then issues a

session-key(πs
A,j) query to get the session key K accepted in that session.

The pair (K, C) is returned to ACMA.
– FDO Queries: On an FDO query with the input (pki, C), Aπ issues a

send(πs
B,i, C). It then issues a session-key(πs

B,i) query and returns the
accepted session key K to ACMA. It returns a ⊥ symbol if there is no
key accepted in the session.

Answering the challenger: ACMA finally outputs a forgery (K∗, C∗) such
that C∗ is a valid encapsulation of K∗ created by UA for UB. Aπ now es-
tablishes a fresh session between UA and UB, by issuing send(πt

B,A, C∗) and
chooses it as the test session. The challenger computes the session key K0 of
the test session and selects a random value K1 from session key distribution.
It then chooses b ∈R {0, 1} and gives Kb to Aπ. Aπ outputs its guess as 0 if
Kb = K∗ or 1 otherwise.

For ACMA to be successful it has to forge a valid encapsulation of UA

created for UB i.e. between any two users that were chosen initially. As
explained above, Aπ always wins whenever ACMA outputs such a forgery by
establishing a test session between those two users. Hence, the advantage of
Aπ constructed from ACMA is

Advπ
1 (k) = εu (1)

For each FEO or FDO query, Aπ has to establish a session through a send
query and retrieve the session key through a session-key query. Hence, the
running time of Aπ is bounded by t1 ≤ tu + (nfeo + nfdo)(ts + tk).

Constructing Aπ from ACCA: Now, we assume that there exists ACCA

against insider confidentiality with a non-negligible advantage εc. Using
ACCA as subroutine, we construct an adversary Aπ that can distinguish
real session key from a random value with an advantage of at least εc

(n−1) .
The running time of Aπ is t2 ≤ tc + nfdo(ts + tk), where tc is the running



292 M.C. Gorantla, C. Boyd, and J.M. González Nieto

time of ACCA, nfdo is the number of FDO queries issued by ACCA and ts
and tk are the response times for send and session-key queries respectively.
Aπ allows ACCA to select a user UB from the set of users {U1, . . . , Un}. The
aim of ACCA is to break the confidentiality of an encapsulation created for
UB by any other user.

Aπ now initiates a session πt
A,B between UB and any other user UA,

by issuing a send(πt
A,B, λ) query. It obtains the outgoing parameter C∗ and

establishes a matching session by issuing a send(πt
B,A, C∗) query. Aπ chooses

either πt
A,B or πt

B,A as the test session. The challenger selects b ∈R {0, 1} and
gives real session key computed in the test session if b = 0 or a random value
chosen from session key distribution otherwise. Let Kb be the value returned
to Aπ. Aπ now issues a session-expiration(πt

A,B) query, which ensures that
the key computed in that session is erased.

Aπ corrupts all the users (including UA) except UB and gives the key
pairs to ACCA. It is now ready to answer the queries asked by ACCA:
– FDO Queries: When a decapsulation query is asked with the input

(pki, C), Aπ initiates a session through send(πs
B,i, C) query. It then is-

sues a session-key(πs
B,i) and obtains the session key K generated in that

session and returns it to ACCA. It returns a ⊥ symbol if there is no key
accepted in the session.

Answering the challenger: After adaptively asking the FDO queries ACCA

outputs a public key pks′ . If pks′ �= pkA, Aπ aborts its execution. Otherwise,
it gives (Kb, C

∗) as the challenge to ACCA. ACCA may continue to ask the
FDO queries except the trivial one with input (pkA, C∗). It finally returns
a bit θ as its guess with an advantage εc. Incase θ = 0, Aπ outputs b = 0,
which implies C∗ is a valid encapsulation of Kb and thus Kb is a real session
key. Aπ outputs b = 1 otherwise.

ACCA becomes successful if it can break the confidentiality of an encap-
sulation created for the initially chosen UB by any other user. Aπ wins its
game with non-negligible advantage only if ACCA outputs pks′ = pkA in the
challenge phase i.e. the public key of the user UA selected by Aπ. This occurs
with the probability 1

(n−1) . Hence, the advantage of Aπ when constructed
from ACCA is

Advπ
2 (k) ≥ εc

(n − 1)
(2)

For each FDO query asked by ACCA, Aπ has to establish a session through
a send query and retrieve the session key through a session-key query. Hence,
the running time of Aπ is bounded by t2 ≤ tc + nfdo(ts + tk).

From (1) and (2), the advantage of Aπ when constructed from ACMA or ACCA is
Advπ(k) ≥ min{Advπ

1 (k), Advπ
2 (k)}, which is non-negligible. The running time

of such Aπ with the advantage Advπ(k) is tπ ≤ max{t1, t2}. But, as the protocol
π is secure in the CK model Advπ(k) must be negligible. This is a contradiction
to the construction of Aπ from ACMA or ACCA. Hence, there exists no such
ACMA or ACCA that has non-negligible advantage against SK ��
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Note that, if π does not provide sender forward secrecy, then the resulting SK
will be outsider secure for both confidentiality and unforgeability notions.

4.1 New Signcryption KEM from the One-Pass HMQV

The one-pass HMQV protocol proposed by Krawczyk [10] can be used as a sign-
cryption KEM secure in the insider confidentiality and outsider unforgeability
notions. This new signcryption KEM between the parties A and B in the multi-
user setting is presented in Figure 3. Apart from the system parameters used
for ECISS-KEM1 described in Section 3.1, a new hash function H defined as
H : G × {0, 1}∗ → Z∗

q is used.

– Encapsulation
1. Choose t ∈R Z∗

q

2. Set C = tP
3. Set h = H(C, (Â||B̂))
4. Set K = Hash((t + sh)Pr)
5. Output (K, C)

– Decapsulation
1. Set h = H(C, (Â||B̂))
2. Set K = Hash (r(C + hPs))
3. Output K

Fig. 3. New Signcryption KEM

4.2 Security of the New KEM

Krawczyk [10] proved the one-pass HMQV secure in the CK model. Its security is
based on the XCR signature, whose security was also proven by Krawczyk in the
random oracle model assuming the hardness of the CDH problem. By combining
this result with Theorem 3, it follows that the new signcryption KEM is secure
in the insider confidentiality and outsider unforgeability notions.

Table 1 compares the new signcryption KEM with existing signcryption KEMs
in terms of security and efficiency. The security notions considered are insider
and outsider security for both confidentiality and unforgeability. The efficiency
is measured by number of group exponentiations required in encapsulation and
decapsulation algorithms. The new signcryption KEM is the only one that has

Table 1. Security and efficiency comparisons with existing signcryption KEMs

Confidentiality Unforgeability Efficiency
Outsider Insider Outsider Insider Encap. Decap.

ECISS-KEM1 [6] Y N Y N 2 Exp 1 Exp

ECISS-KEM2 [6] broken

Dent [9] Y N Y Y 1 Exp 2 Exp

Bjørstad and Dent [13] Y N Y Y 1 Exp 2 Exp

Our new KEM Y Y Y N 2 Exp 1.5 Exp
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insider security for confidentiality. It achieves this forward secrecy with an addi-
tional half-length exponentiation3 compared to the ECISS-KEM1 in the decap-
sulation algorithm. Unlike the ECISS-KEM1, the discovery of ephemeral data
by an adversary in the new signcryption KEM leads to compromise of only one
particular communication. Moreover, the notions of security considered for all
other signcryption KEMs are in the two-user setting, whereas the security of the
new signcryption KEM is treated in the multi-user setting.

5 One-Pass Key Establishment from Signcryption KEM

We now consider the generic construction in the other direction. We first discuss
how a signcryption KEM SK can be used as a one-pass key establishment pro-
tocol π. The security requirements of SK that can be used are first stated and
a formal construction of π from SK is then presented.

When SK is used as π, the encapsulation algorithm of SK becomes the session
key computation process by the sender in π. The generated symmetric key serves
as the session key and the encapsulation of the symmetric key as the outgoing
message to the receiver. The receiver can compute the same session key by
executing the decapsulation algorithm on the incoming message.

For SK to be suitable to be used as a one-pass key establishment protocol it
should be secure in the insider confidentiality and outsider unforgeability notions.
Security in these notions enables the resulting protocol to have SK-security with
sender forward secrecy in the CK model. For the reasons discussed in Section 3.2
security against compromise of ephemeral data is not guaranteed for π. Therefore
the adversary is not allowed to have access to the session-state query.

Theorem 4. If a signcryption KEM is secure in the insider confidentiality and
outsider unforgeability notions, then it can be used as a one-pass key establish-
ment protocol π that is SK-secure with sender forward secrecy in the CK model
(without session-state queries).

Proof. The truth value of the above theorem is the same as the statement:
if π is not secure in the CK model, then SK is not secure in either insider
confidentiality or outsider unforgeability notion. Hence, it is enough to show
that given an adversary Aπ against π that can distinguish a real session key
from a random number with advantage ε, then either ACMA or ACCA against
SK can be constructed with advantage ε′ ≥ ε in polynomial time.

The proof is divided into two parts. In the first part ACMA is constructed
with non-negligible advantage only if an event Forgery (explained later) occurs.
In the second part ACCA is constructed from Aπ with non-negligible advantage
if the event Forgery does not occur.

Let {U1, U2, ..., Un} be set of n users and assume each user is activated at
most m times by Aπ, where n and m are polynomials in the security parameter.

3 Krawczyk [10] showed that the length of h = q
2 provides the right performance-

security trade-off.
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Constructing ACMA from Aπ: We assume the existence of Aπ that can dis-
tinguish a real session key from a random value in time tf . We then construct
ACMA within time t1 ≤ tf + m(n − 1)(tfeo + 2 · tfdo), where tfeo and tfdo

are the response times for the FEO and FDO queries respectively.
The input to ACMA consists of the sender and receiver public keys pkA and

pkB of two users UA and UB from the set of n users {U1, . . . , Un} respectively.
Its aim is to produce (K∗, C∗) where C∗ is a valid encapsulation of K∗ under
skA and pkB, using Aπ as subroutine. The input of ACMA also contains key
pairs of each of the n parties in the protocol, except the sender’s private
key skA of UA and receiver’s private key skB of UB for whom only the
corresponding public keys are given. ACMA wins its game only if the target
session chosen by Aπ is a session between UA and UB. All the queries from
Aπ that do not concern UA and UB can be answered directly by ACMA which
knows the private keys of the users. For queries that require the knowledge of
skA and skB , ACMA uses its own oracles and returns the messages produced
to Aπ as described below.
– send: When a send(πs

A,j , λ) query is asked, ACMA queries its FEO with
the input pkj and obtains (K, C). It then returns C to Aπ as the out-
going message and keeps (s, A, j, K, C) in its encapsulation list LE . If
Aπ issues send(πs

B,i, C), ACMA queries its FDO with the input (pki, C).
If it obtains a symmetric key K from the challenger, ACMA marks the
oracle πs

B,i as accepted and stores the value (s, B, i, K, C) in LE . If the
output of the FDO is ⊥ then the session is not accepted and the en-
try (s, B, i,⊥, C) is stored in LE . The result of whether the session is
accepted or not is made known to Aπ.

– session-key: For a session-key(πs
i,j) query, it returns the key held in the

session with identifier s as follows: Since a session-key key reveal query is
issued only on a session that has an accepted session key, the session id
s must have an entry in LE . ACMA checks to see if there is an entry for
(s, i, j) in LE and returns the corresponding key K incase of a match. If
there is no key stored in LE along with s, the session-key is not a valid
query.

– session-expiration: On the input πs
i,j , ACMA deletes the entry with s from

LE . There must have been an entry in LE because session-expiration can
be issued only on a completed session.

– corrupt: When Aπ wishes to corrupt a party Ui (for i �= A, B), ACMA

fetches session keys from LE that are generated by the oracles at Ui.
It returns all these keys (if any) along with Ui’s long term private key.
ACMA outputs “fail” for a corrupt query on UA or UB. Note that ACMA

cannot return the internal state information for a corrupt query for rea-
sons discussed in Section 3.2.

Whenever, a send(πs
B,A, C) is issued, ACMA first checks to see if there exists

an entry (s, A, B, K, C) in LE for some s and K. If there is an entry it just
returns the message that the session is accepted. Otherwise, it queries its
FDO with the input (pkA, C). If the output of FDO is ⊥ it returns the
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message that the session is not accepted. If FDO(pkA, C) = K∗ �= ⊥, ACMA

outputs (K∗, C∗) as its forgery with C∗ = C.
Let Forgery be the event that Aπ issues a send(πs

B,A, C∗) such that C∗ is a
valid encapsulation under skA and pkB such that it was not the response of
an earlier send(πs

A,B, λ) query. Clearly, ACMA wins its game only if the event
Forgery occurs. If Aπ ends its run without choosing a test session between
UA and UB or if the event Forgery does not occur ACMA outputs “fail”. The
probability of Aπ choosing a test session that has UA as initiator and UB as
responder is 1

n(n−1) . Thus, the non-negligible advantage of ACMA is given
as:

AdvCMA
A (k) ≥ Pr[Forgery]

n(n − 1)
(3)

For each send query to the oracle πs
A,j , ACMA has to query the FEO and FDO

oracles. The maximum number of such queries involving UA can be m(n−1).
Similarly, for each send query to πs

B,i a query to FDO is made. The maximum
possible number of such queries involving UB is m(n−1). Hence, ACMA can
forge SK with the above advantage in time t1 ≤ tf +m(n−1)(tfeo +2 ·tfdo).

Constructing ACCA from Aπ: Now, we assume the existence of Aπ that can
distinguish a real session key from a random value in time td when the event
Forgery does not occur. Using Aπ as subroutine, we construct ACCA within
time t2 ≤ td + (m(n − 1) − 1)tfdo, where tfdo is the time required to get a
response from FDO.

The input to ACCA consists of a receiver’s public key pkB of a user UB

and the key pairs of rest of users from the set {U1, . . . , Un}. The aim of
ACCA is to break the confidentiality of encapsulations created for UB by
any other user using Aπ as subroutine.

ACCA returns a sender’s public key pkA of a user UA to its challenger. The
challenger gives (Kb, C

∗) to ACCA as the challenge computed as described
in Section 2.2. ACCA chooses t ∈R {1, . . . , m}. With these choices ACCA is
trying to guess Aπ’s choice of the target session. It is now ready to simulate
the view of Aπ.

Except for UB, the actions of rest of the uncorrupted users are performed
by ACCA with its knowledge of the corresponding private keys. For queries
that require the knowledge of receiver’s private key of UB, ACCA uses its
own oracle.
– send: When Aπ issues a send(πs

i,B , λ) query, ACCA generates (K, C),
where C is encapsulation of K created by Ui as it knows the private key
ski. It then returns C to Aπ as the outgoing value and keeps (s, i, B, K, C)
in its encapsulation list LE . If A issues send(πs

B,i, C), ACCA queries its
FDO with the input (pki, C). If it obtains a symmetric key K from the
challenger, the session is accepted and the entry (s, B, i, K, C) is stored in
LE . If the output of FDO is ⊥, the session is not accepted and the entry
(s, B, i,⊥, C) is stored. The result of whether the session is accepted or
not is made known to Aπ. The t-th instantiation between UA and UB is
handled in a special way as explained later.
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– session-key: When a session-key(πs
i,j) is issued, ACCA first checks to see

if there is an entry for (s, i, j) in LE and returns the corresponding key
incase of a match. Otherwise, the session-key is not a valid query.

– session-expiration:On the input πs
i,j , ACCA deletes the entry with s from

LE .
– corrupt: When Aπ wishes to corrupt a party Ui (for i �= A, B), ACCA

fetches session keys from LE that are generated by the oracles at Ui. It
returns all these keys (if any) along with Ui’s long term private key. It
aborts the simulation on a corrupt query on UA or UB.

If a send(πt
A,B, λ) query is issued, ACCA returns C∗ as the outgoing param-

eter. Now, Aπ can choose the t-th session between UA and UB as its target
session in one of following ways

– The session πt
A,B itself or

– A matching session established by issuing send(πt
B,A, C∗) query.

Aπ can issue a corrupt(UA) only after a session-expiration(πt
A,B). If it chooses

the t-th session between A and B as the test session as expected by ACCA,
Kb is returned. Eventually, Aπ halts with its guess θ. If θ = 0, ACCA outputs
b = 0 implying that Kb is a real session key and thus C∗ is an encapsulation
of Kb. Otherwise b = 1 is returned.

If Forgery occurs Aπ may win its game without choosing the session in
which the challenge encapsulation C∗ is injected, as the test session. In this
case ACCA gets no advantage. Hence, if the event Forgery occurs or if Aπ

chooses a different session other than the one expected by ACCA as test
session, ACCA outputs a random bit b with a probability 1

2 .
The probability of Aπ choosing a session t that has UA as initiator and

UB as responder is 1
mn(n−1) . The non-negligible advantage of ACCA is given

as

AdvCCA
A (k) ≥ (Advπ

A(k)|Forgery)
mn(n − 1)

(4)

For each send(πs
B,i) query, ACCA has to issue an FDO query. The maximum

possible number of such queries involving the user UB is m(n − 1) − 1;
excluding one in the test session. Hence, the running time of ACCA with the
above advantage is t2 ≤ td + (m(n − 1) − 1)tfdo.

By the theorem of total probability, the advantage of Aπ is given by

Advπ
A = (Advπ

A|Forgery) × Pr(Forgery) + (Advπ
A|Forgery) × Pr(Forgery)

≤ Pr(Forgery) + (Advπ
A|Forgery)

However, from Equations 3 and 4, Pr(Forgery) and (Advπ
A|Forgery) are negli-

gible when SK is secure in the insider confidentiality and outsider unforgeability
notions. Hence, the advantage of an adversary Aπ against one-pass key estab-
lishment protocol constructed from such an SK is also negligible. ��
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New key establishment protocol: The ECISS-KEM1 in the multi user set-
ting described in Figure 2 can be used as a one-pass key establishment protocol.
However, as the ECISS-KEM1 is secure only in the outsider security model it
does not provide sender forward secrecy. Moreover, as discussed in Section 3.2
it does not have security against session-state reveal queries. One advantage it
does have over the one-pass HMQV is that its overall efficiency is better.

6 Conclusion

We have shown that there exists a duality between signcryption KEMs and one-
pass key establishment protocols. However, the models typically used for defining
security of key establishment are stronger than those for signcryption. Hence it
has turned out that starting from signcryption KEMs we can only derive one-
pass key establishment protocols with weaker security than those already known
(such as HMQV).

In the other direction we have been able to use a strong one-pass key estab-
lishment protocol (HMQV) to derive a signcryption KEM with stronger prop-
erties than those known before. However, even though our signcryption KEM is
stronger in terms of confidentiality, it does not provide insider secure authentica-
tion (non-repudiation). It might be possible to obtain a signcryption KEM that
is insider secure with respect to both confidentiality and authentication from a
one-pass key establishment protocol that is sender forward secure and resilient
to KCI attacks. The feasibility of doing this is still not clear.

It remains an open question to derive hybrid signcryption schemes with in-
sider security for both confidentiality and authentication even without using our
generic constructions. Providing more signcryption schemes secure when the ad-
versary has access to a session-state query also remains an interesting challenge.
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A Proof of Theorem 1

Proof. To prove this theorem we show that if there exists a polynomial time ad-
versary ACMA against the unforgeability of the KEM with non-negligible advan-
tage ε, then a polynomial time algorithm AGDH can be constructed that solves
the Gap Diffie-Hellman (GDH) problem with the same advantage as ACMA.
Recall that the GDH problem entails solving the Computational Diffie-Hellman
(CDH) with the assistance of a decisional Diffie-Hellman oracle ODDH [20].

Let A = aP , B = bP be the problem instance given to AGDH with the goal to
find the value abP . AGDH runs ACMA and simulates the answers to the queries
made by ACMA as shown below.

– Hash: For Hash queries , AGDH initially starts with an empty list LH.
On input (Ŝ, R̂, X), AGDH first checks to see if there is an existing en-
try (Ŝ, R̂, X, K) for some K in LH that stores the past returned hash values.
If so, it returns the corresponding K; otherwise it accesses the global encap-
sulation list LE and does the following:

if (Ŝ, R̂, C, K) ∈ LE for some K and C values then
compute Y = (X − C)
if ODDH(Ps, Pr, Y ) = True then

if Ps = A and Pr = B then
return Y as solution to the GDH challenger and exit

else
return K to ACMA

update LH = LH‖(Ŝ, R̂, X, K)
end

else
Select K randomly from the key distribution and return it to ACMA

update LH = LH‖(Ŝ, R̂, X, K)
end
else
Select K randomly from the key distribution and return it to ACMA

updateLH = LH‖(Ŝ, R̂, X, K)
end

– FEO: Initially AGDH has an empty encapsulation list LE . On input (Ps, Pr),
AGDH first selects C ∈R G. It then checks each entry (Ŝ, R̂, X, K) in LH to
see if ODDH(Ps, Pr, X − C) = True for the same (Ps, Pr) as in the input to
FEO. If so, it fetches the corresponding K from LH; otherwise it selects K
randomly from the symmetric key distribution. It returns (K, C) to ACMA.
Finally, LE is updated to LE = LE ‖(Ŝ, R̂, K, C).

– FDO: On input (Ps, Pr, C), AGDH first checks to see if there is an entry(Ŝ, R̂,
C, K) ∈ LE .
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In case of a match it returns the corresponding symmetric key K. Otherwise,
it does the following:

if (Ŝ, R̂, X, K) ∈ LH for some X then
compute Y = (X − C)
if ODDH(Ps, Pr, Y ) = True then

if Ps = A and Pr = B then
return Y as solution to the GDH challenger and exit

else
fetch corresponding K from LH and return it to ACMA

update LE = LE‖(Ŝ, R̂, K, C)
end

else
Select K randomly from the key distribution and return it to ACMA

update LE = LE‖(Ŝ, R̂, K, C)
end
else
Select K randomly from the key distribution and return it to ACMA

update LE = LE‖(Ŝ, R̂, K, C)
end

Answering the GDH challenger: Eventually, ACMA outputs a forgery (K∗, C∗)
as an encapsulation created by S from R. For the forgery to be valid under
the outsider unforgeability notion FEO/FDO-sUF-CMA, C∗ must be a valid
encapsulation of K∗. If C∗ is a valid encapsulation of K∗ then ACMA must have
queried the Hash with corresponding keying material, in which case AGDH would
have answered the GDH challenger already. Hence, the advantage of AGDH , ε′

in solving the GDH problem is the same as the advantage of ACMA. ��
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Abstract. We observe a natural generalisation of the ate and twisted
ate pairings, which allow for performance improvements in non standard
applications of pairings to cryptography like composite group orders. We
also give a performance comparison of our pairings and the Tate, ate and
twisted ate pairings for certain polynomial families based on operation
count estimations and on an implementation, showing that our pairings
can achieve a speedup of a factor of up to two over the other pairings.

1 Introduction

Initiated by the pioneering works [18,13,5] on identity based key agreement,
one-round tripartite Diffie-Hellman key exchange and identity based encryption
respectively, the investigation of pairings has become one of the most attractive
areas in contemporary cryptographic research. A host of pairing based proto-
cols has been developed since 2001, offering superior efficiency or greater, novel
functionality over classical protocols.

The currently only known instantiations of pairings suitable for cryptography
are the Weil and Tate pairings on elliptic curves or on Jacobians of more general
algebraic curves. In view of the applications, efficient algorithms for computing
these pairings are of great importance.

The Tate pairing on elliptic curves is usually the most efficient choice. It is
generally computed using Miller’s algorithm [14,15] or a much improved ver-
sion of Miller’s algorithm presented in Barreto et al [2]. Duursma and Lee [9]
subsequently introduced a very special algorithm on a class of supersingular hy-
perelliptic curves over finite fields. Barreto et al [1] generalised this algorithm
to efficiently compute a particular form of the Tate pairing, called ηT pairing,
on supersingular elliptic and hyperelliptic curves. The main improvement here
is that the loop length in Miller’s algorithm for computing the Tate pairing can
usually be reduced to at most half the length when computing the ηT pairing.
Hess et al [12] have generalised the ηT pairing in two ways to ordinary elliptic
curves, retaining the efficiency advantage of the ηT pairing over the Tate pairing
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and at the same time enabling larger embedding degrees. The pairings from [12]
are called ate pairing and twisted ate pairing.

The dramatic efficiency improvements of the ηT pairing and the ate and
twisted ate pairings over the Tate pairing are not always possible. Let E be
an elliptic curve over Fq with #E(Fq) = q + 1 − t and let r be a large prime
factor of #E(Fq). The loop length in Miller’s algorithm for the Tate pair-
ing is roughly log2(r), while the loop length of the ηT and ate pairings is
roughly log2(|t|). Since |t| ≤ 2

√
q by the theorem of Hasse, we have roughly

log2(|t|) ≤ (1/2) log2(q). Now, in standard situations one has approximately
log2(r) = log2(q), so log2(|t|) ≤ (1/2) log2(r) and the statement on the loop
lengths follows. But as soon as r ≤ (1/2) log2(q), the Tate pairing may actually
become faster than the ηT or ate pairings.

In the present paper we observe a generalisation of the ate and twisted ate
pairings which we call optimised ate and optimised twisted ate pairings. The
loop length of these pairings is roughly equal to log2(|S|), where S is any integer
such that S ≡ q mod r (we choose S to be of minimal absolute value). Note
that S ≡ t − 1 mod r because of r|#E(Fq) and that roughly |S| ≤ r/2. With
this choice of S we thus obtain a pairing that is always at least as fast as the
Tate pairing and the ate pairings. We also provide a performance comparison
of our optimised pairings and the Tate, ate and twisted ate pairings for certain
polynomial families, showing that our pairings can achieve a speedup of a factor
of up to two over the other pairings.

The significance of our result is twofold. First, our pairings are very natural
generalisations of the ate and twisted ate pairings. Second, while our pairings
do not offer a performance improvement for standard applications of pairings in
cryptography, they may prove useful for special embedding degrees or composite
group orders. The use of composite group orders in pairing based protocols has
recently attracted much interest, see for example [6,7]. If pairing values are to
be computed in prime order subgroups with known subgroup orders (we are
currently not aware of any protocols based on this situation) then our pairings
can offer performance improvements.

This paper is organised as follows. Section 2 gives a brief mathematical de-
scription of the Tate pairing, ηT pairing and the ate and twisted ate pairings.
Section 3 contains our main theorem about the optimised ate and optimised
twisted ate pairings. Section 4 contains a performance comparison of our pairings
against the Tate, ate and twisted ate pairings, using operation count estimations
and our implementation of these pairings. We draw conclusions in Section 5.

2 Background

2.1 Tate Pairing

Let Fq be a finite field of characteristic p and E an elliptic curve defined over Fq.
Let r be a large prime coprime to q such that r|#E(Fq). The embedding degree
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k with respect to q and r is the smallest positive integer k such that r|(qk − 1).
We also require r2

� #E(Fqk). The point at infinity of E is denoted by O.
For every P ∈ E(Fqk) and integer s let fs,P be an Fqk -rational function with

divisor div(fs,P ) = s(P ) − (sP ) − (s − 1)(O). Note that fs,P is uniquely defined
up to non-zero scalar multiples from Fqk .

Let P ∈ E(Fqk)[r] and Q ∈ E(Fqk). Choose an arbitrary (random) R ∈
E(Fqk) such that #{P, O, Q + R, R} = 4, and let D = (Q + R) − (R). Then the
Tate pairing is a non-degenerate bilinear pairing defined by

〈·, ·〉r : E(Fqk)[r] × E(Fqk)/rE(Fqk ) → F
×
qk/(F×

qk)r,

〈P, Q〉r = fr,P (D) · F
×
qk .

Pairing-based protocols require unique elements (and not classes) in the do-
main and range of the Tate pairing. Using the isomorphisms φr : E(Fqk)[r] →
E(Fqk)/rE(Fqk ), Q 	→ Q+rE(Fqk) and χr : F

×
qk/(F×

qk)r → μr, x·F×
qk 	→ x(qk−1)/r

with μr = F
×
qk [r], the group of r-th roots of unity, we obtain the reduced Tate

pairing as

t : E(Fqk)[r] × E(Fqk)[r] → μr,

t(P, Q) = χr(〈P, φr(Q)〉r) = 〈P, Q〉(qk−1)/r
r .

Galbraith et al [11] shows that r can be replaced by any integer N such that
r|N |(qk − 1), i.e. t(P, Q) = 〈P, Q〉(q

k−1)/N
N .

One can compute fr,P (Q) for Q ∈ E(Fqk) using Miller’s algorithm. For a
description of Miller’s algorithm and numerous optimisations see Barreto et al [2].
A particularly noteworthy optimisation from [2] is

t(P, Q) = fr,P (Q)(q
k−1)/r,

which holds for P ∈ E(Fq).
The ηT pairing and ate and twisted ate pairings, which are discussed in the

next sections, are all restrictions of some power of the reduced Tate pairing to
suitable subgroups of E(Fqk).

2.2 ηT Pairing

Let E be a supersingular elliptic curve with distortion map ψ : E(Fq) → E(Fqk)
and let #E(Fq) = q + 1 − t. Barreto et al [1] have introduced the (reduced) ηT

pairing which is defined by

ηT (P, Q) = fT,P (ψ(Q))(q
k−1)/r

for T = q − #E(Fq) = t − 1 and P, Q ∈ E(Fq)[r]. It is a bilinear and non-
degenerate pairing if certain conditions are met.

The main improvement of the ηT pairing over the Tate pairing is that the loop
length in Miller’s algorithm for the evaluation of fT,P at a point is at most only
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half the loop length required for the evaluation of fr,P at a point, if r ≈ #E(Fq)
holds true. The reason for this is that T has at most only half the bit length of
#E(Fq) according to the theorem of Hasse.

2.3 Ate Pairing and Twisted Ate Pairing

The ate and twisted ate pairings have been introduced by Hess et al [12]. These
pairings can be regarded as variations or generalisations of the ηT pairing for
ordinary elliptic curves.

Let E be an ordinary elliptic curve. As in the case of the ηT pairing, let
#E(Fq) = q+1−t and T = t−1. Also write N = gcd(T k−1, qk−1) > 0 and T k−
1 = LN . Let πq : (x, y) 	→ (xq, yq) be the q-power Frobenius endomorphism on E
and define two groups G1 = E(Fq)[r] = E[r]∩Ker(πq −1), G2 = E[r]∩Ker(πq −
q). Moreover, define fnorm

T,Q = fT,Q/(zrfT,Q)(O), where z is a local uniformiser
at O. Finally, let cT =

∑k−1
i=0 T k−1−iqi ≡ kqk−1 mod r (these definitions hold

equally for positive or negative T ).
The ate pairing is defined as

aT (Q, P ) = fnorm
T,Q (P )cT (qk−1)/N

for Q ∈ G2 and P ∈ G1. If k|#Aut(E), then the twisted ate pairing is defined
as

atwist
T (P, Q) = fT,P (Q)cT (qk−1)/N

for P ∈ G1 and Q ∈ G2. The ate pairing and twisted ate pairing are bilinear
and non-degenerate if and only if r � L.

Like the ηT pairing, the ate and twisted ate pairing can be computed using
at most half the loop length in Miller’s algorithm in comparison with the Tate
pairing, if r ≈ #E(Fq).

2.4 Twists

The fairly restrictive condition k|#Aut(E) for the twisted ate pairing (note
#Aut(E) ≤ 6 for ordinary E) is related to the existence of twists of E.

Let E and E′ be two ordinary elliptic curves over Fq. The curve E′ is called
a twist of degree d of E if there exists an isomorphism ψ : E′ → E defined over
Fqd and d is minimal with this property. Then the condition d | #Aut(E) holds
true if and only if E admits a twist of degree d.

Table 1 contains information about the various twists of elliptic curves in
characteristic ≥ 5 together with the twisting isomorphisms. The element D has
to be chosen from Fq such that the twisting isomorphisms are properly defined
over Fqd .

Twists can be used in conjunction with the ate and twisted ate pairing to
achieve point compression and a protocol depending speed up. If E′ is a twist of
E of degree d and de = k, then it is possible to choose a twisting isomorphism
ψ : E′ → E such that ψ(E′(Fqe)) = G2. This allows to work with Q′ = ψ−1(Q)
instead of Q. Note that in the supersingular case we can have E′ = E and the
twisted ate pairing then coincides with the ηT pairing.
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Table 1. Twists of Elliptic Curves in Characteristic ≥ 5

d = 2 E : y2 = x3 + Ax + B,

E′ : y2 = x3 + A/D2x + B/D3,

ψ : E′ → E : (x, y) �→ (Dx, D3/2y),

d = 4 E : y2 = x3 + Ax,

E′ : y2 = x3 + A/Dx,

ψ : E′ → E : (x, y) �→ (D1/2x, D3/4y),

d = 3, 6 E : y2 = x3 + B,

E′ : y2 = x3 + B/D,

ψ : E′ → E : (x, y) �→ (D1/3x, D1/2y).

3 Optimised Versions of the Ate and Twisted Ate
Pairings

Let E be an ordinary elliptic curve over Fq. The next theorem provides a gen-
eralisation of the ate and twisted ate pairings by replacing T = t − 1 with any
integer S such that S ≡ q mod r.

Theorem 1. Let S be any integer with S ≡ q mod r. Define N = gcd(Sk −
1, qk − 1) > 0 and L = (Sk − 1)/N . Let cS =

∑k−1
i=0 Sk−1−iqi mod N . Then

aS : G2 × G1 → μr, (Q, P ) 	→ fnorm
S,Q (P )cS(qk−1)/N

defines a bilinear pairing. If k | #Aut(E) then

atwist
S : G1 × G2 → μr, (P, Q) 	→ fS,P (Q)cS(qk−1)/N

also defines a bilinear pairing. Both pairings aS and atwist
S are non-degenerate if

and only if r � L.
The relation with the reduced Tate pairing is

aS(Q, P ) = t(Q, P )L and atwist
S (P, Q) = t(P, Q)L.

We remark that if P = O or Q = O then the pairing values are defined to be
equal to 1. Also, if P = Q (only possible for k = 1) then P needs to be replaced
by any divisor (P + R) − (R) coprime to (Q) − (O) for the first pairing and by
(Q + R) − (R) coprime to (P ) − (O) for the second pairing, with R ∈ E(Fq).

We will show that under certain conditions a suitable choice of S yields pair-
ings aS and atwist

S which are more efficient than the ate pairing aT and the
twisted ate pairing atwist

T for T = t − 1. For these choices of S, we call aS and
atwist

S optimised ate and optimised twisted ate pairing.
Theorem 1 can also be applied to the base extensions Ee of E over Fqe (i.e.

E regarded as an elliptic curve over Fqe) for 1 ≤ e ≤ k − 1. The subgroups G1
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and G2 of E[r] remain invariant under such base extensions and the embedding
degree of Ee with respect to r is ke = k/ gcd(k, e). Hence Theorem 1 also holds
true after replacing q by qe and k by ke for any e with 1 ≤ e ≤ k − 1. This
observation allows for example to apply the twisted ate pairing in the case k �

#Aut(E) and gcd(k, #Aut(E)) 
= 1, where we choose e = k/ gcd(k, #Aut(E)) so
that ke = gcd(k, #Aut(E)) and ke | #Aut(Ee). Another application is to further
minimise the absolute value of S. This has been observed in [22], where a number
of interesting examples are given.

Proof (of Theorem 1). The proof is essentially the same as in [12], but slightly
more general. In the following, we only adapt the main arguments of [12] to our
setting.

We let ψ = πq for the ate pairing case and ψ = γπq for the twisted ate pairing
case, where γ ∈ Aut(E) is an automorphism of order k such that (γπq)(Q) = Q
and (γπq)(P ) = qP . If we interchange P and Q for the twisted ate pairing we
have ψ(P ) = P , ψ(Q) = qQ = SQ and need to consider fS,Q(P )cS(qk−1)/N like
for the ate pairing. This allows us to deal with both cases simultaneously.

From Lemma 1 of [12] we obtain

t(Q, P ) = fr,Q(P )(q
k−1)/r = fN,Q(P )(q

k−1)/N

and

t(Q, P )L = fN,Q(P )L(qk−1)/N = fLN,Q(P )(q
k−1)/N

= fSk−1,Q(P )(q
k−1)/N

= fSk,Q(P )(q
k−1)/N . (1)

Lemma 2 of [1] yields

fSk,Q = fSk−1

S,Q fSk−2

S,SQ · · · fS,Sk−1Q. (2)

Since ψ is purely inseparable of degree q, we obtain from Lemma 4 in [12]

fS,ψi(Q) ◦ ψi = f qi

S,Q. (3)

We have ψi(Q) = SiQ and ψi(P ) = P . Combining this with (2) and (3) gives

fSk,Q(P ) = fS,Q(P )
∑ k−1

i=0 Sk−1−iqi

. (4)

Substituting (4) into (1) gives

t(Q, P )L = fS,Q(P )cS(qk−1)/N . (5)

Now (5) shows that aS and atwist
S are bilinear pairings, which are non-degenerate

if and only if r � L. �
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4 Performance Evaluation

We provide some families of elliptic curves admitting a twist of degree 4 and 6,
and compare the costs of our optimised pairings with the standard pairings.

4.1 Polynomial Families

Assume q = p. If Δ = 1, 2, 3 in the CM equation 4p − t2 = ΔV 2, then the corre-
sponding elliptic curves can be generated without the full CM algorithm [10], for
example by randomly choosing α and β in the equation below until the correct
curve is found (but see also [17]).

E1 : y2 = x3 + αx (Δ = 1)

E2 : y2 = x3 − 30αx2 + 56α3 (Δ = 2)

E3 : y2 = x3 + β (Δ = 3)

The endomorphism rings are isomorphic to Z[
√

−Δ] and E1, E2 and E3 admit
twists of degree 4, 2 and 6 respectively.

Let ρ ≡ log p/ log r be the ratio between the bit lengths of the finite field and
the order of the subgroup. Some polynomial families such that 4p−t2 is a square
polynomial have been presented

– in [8], for k = 4 and ρ ∼ 2,
– in [19], for k = 6 and ρ ∼ 2,
– in [10], for k = 8 and ρ ∼ 3/2,
– in [4], for k = 12 and ρ ∼ 1.

The details of these polynomial families are given in Appendix 1.

4.2 Efficiency Comparison

We follow the analysis of [16] and compare the Tate pairing fr,P (Q), ate pairing
fT,Q(P ), twisted ate pairing fT e,P (Q), optimised ate pairing fS,Q(P ) and opti-
mised twisted ate pairing fSe,P (Q) on ordinary elliptic curves admitting a twist
of degree 6 when k = 6, 12 and of degree 4 when k = 4, 8. We refer to fN,P (Q) as
a Miller-Lite operation and fN,Q(P ) as a Miller-Full operation. We denote the
cost of the Miller-Lite operation by CLite and the cost of the Miller-Full opera-
tion by CFull. Assume both operations use projective coordinates. On the form
Y 2 = X3 +AX +B, the costs for Miller-operations are estimated as follows [12].
When A = −3:

CLite = (4S1 + (2e + 7)M1 + Sk + Mk) log2 N

CFull = (4Se + 6Me + 2eM1 + Sk + Mk) log2 N

When A = 0:

CLite = (5S1 + (2e + 6)M1 + Sk + Mk) log2 N

CFull = (5Se + 6Me + 2eM1 + Sk + Mk) log2 N

where s = 2i3j, Ms = 3i5jM1, Ss = Ms with respect to multiplication in F
×
qs .
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Table 2. The Costs Required for the Different Pairings

Cost (average size t)
Security Level Method Standard Optimised

k = 4, d = 4 Tate 4960
log2 p ∼ 320 ate 4800 2400
log2 r ∼ 160 twisted ate 4960 2480

k = 6, d = 6 Tate 11008
log2 p ∼ 512 ate 5504 5504
log2 r ∼ 256 twisted ate 5504 5504

k = 8, d = 4 Tate 17664
log2 p ∼ 384 ate 16896 16896
log2 r ∼ 256 twisted ate 26496 13248

k = 12, d = 6 Tate 26880
log2 p ∼ 256 ate 16256 16256
log2 r ∼ 256 twisted ate 26880 20160

Using the parameters in Appendix 1, we estimate the loop length for each
pairing. The results are given in Table 2.

When k = 4 the optimised ate and optimised twisted ate pairing are twice as
fast as the Tate, ate and twisted ate pairing. When k = 8 the optimised twisted
ate pairing is more efficient than the optimised ate pairing. We conclude that
our optimised pairings always run at least as fast as the Tate pairing, and the
loop length of the optimised (twisted) ate pairing can be at least reduced to
deg(r)−1
deg(r) of the loop length of the Tate pairing when t − 1 ≥ r for the optimised

ate pairing and (t − 1)e ≥ r for the optimised twisted ate pairing.

4.3 Implementation Evaluation

We have implemented all pairings on G1 × G2 for k = 4 using the GNU MP
library in C++ to demonstrate the effectiveness of our proposal. Table 3 presents
the running times for Tate pairing, twisted ate pairing and optimised twisted
ate pairing excluding the final powering. The detailed parameters are given in
Appendix 2.

Table 3. The Running Time for the Different Pairings

Security Level Method Running time

k = 4 Tate 11.3
log2 q ∼ 320, log2 r ∼ 160 Twisted ate 11.1
MOV security ∼ 1280 Optimised twisted ate 5.7

5 Conclusion

We have described very natural optimised variants of the ate and twisted ate
pairing which are simultaneous improvements over the Tate, ate and twisted ate



310 S. Matsuda et al.

pairings. We have provided some sample polynomial families for which the loop
length in Miller’s algorithm for our optimised pairings is shorter by a factor of
deg(r)−1
deg(r) in comparison to the loop length for the Tate pairing when t−1 ≥ r for

the optimised ate pairing and (t − 1)e ≥ r for the optimised twisted ate pairing.
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Appendix 1

Polynomial families for k = 4, 6, 8, 12 from [8,4,10] and the values of e =
k/ gcd(k, #Aut(E)), T = t − 1, S ≡ p mod r and Se ≡ pe mod r.

k = 4
p = 8z4 + 6z2 + 2z + 1
r = 4z2 + 1
t = 4z2 + 2z + 2
ΔV 2 = 4z2(2z − 1)2

Δ = 1
e = 1
T = 4z2 + 2z + 1
S = 2z

k = 6
p = 27z4 + 9z3 + 3z2 + 3z + 1
r = 9z2 + 3z + 1
t = 3z + 2
ΔV 2 = 3z2(6z + 1)2

Δ = 3
e = 1
T = 3z + 1
S = T

http://crypto.stanford.edu/miller/miller.pdf 
http://eprint.iacr.org/2007/253 
http://eprint.iacr.org/2005/139 
http://eprint.iacr.org/2007/247
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k = 8
p = 1

4 (81z6 + 54z5 + 45z4 + 12z3 + 13z2 + 6z + 1)
r = 9z4 + 12z3 + 8z2 + 4z + 1
t = −9z3 − 3z2 − 2z
ΔV 2 = (3z + 1)2

Δ = 1
e = 2
T = −9z3 − 3z2 − 2z − 1
T 2 = 81z6 + 54z5 + 45z4 + 30z3 + 10z2 + 4z + 1
S = T
Se = p2 mod r = −18z3 − 15z2 − 10z − 4

k = 12
p = 36z4 + 36z3 + 24z2 + 6z + 1
r = 36z4 + 36z3 + 18z2 + 6z + 1
t = 6z2 + 1
ΔV 2 = 3(6z2 + 4z + 1)2

Δ = 3
e = 2
T = 6z2

T 2 = 36z4

S = T
Se = p2 mod r = −36z3 − 18z2 − 6z − 1

Appendix 2

The parameters for the pairing implementation in Section 4.3.

k = 4
p=680241220348515477477949259894191902369939655391504568151207016994
661689050587617052536187229749 (319 bit)
E : y2 = x3 + 3x
E′ : y2 = x3 + (3/D)x, where 1/D = v2 and v2 − 2 = 0
#E(Fp)=6802412203485154774779492598941919023699396553903381709458361
23217606411022317222264735061564936 (319 bit)
#E′(Fp)=680241220348515477477949259894191902369939655392670965356577
910771716964918860599461430061667370 (319 bit)
r = 1166397205370893777055276948271688598347500051217 (160 bit)
t = 1166397205370893777055278028270394787801125664814 (160 bit)
T = 1166397205370893777055278028270394787801125664813 (160 bit)
S = 1079998706189453625613596 (80 bit)
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Abstract. We propose two simple and efficient deterministic extractors
for J(Fq), the Jacobian of a genus 2 hyperelliptic curve H defined over
Fq, for some odd q. Our first extractor, SEJ, called sum extractor, for a
given point D on J(Fq), outputs the sum of abscissas of rational points
on H in the support of D, considering D as a reduced divisor. Similarly
the second extractor, PEJ, called product extractor, for a given point D
on the J(Fq), outputs the product of abscissas of rational points in the
support of D. Provided that the point D is chosen uniformly at random
in J(Fq), the element extracted from the point D is indistinguishable
from a uniformly random variable in Fq. Thanks to the Kummer surface
K, that is associated to the Jacobian of H over Fq, we propose the sum
and product extractors, SEK and PEK, for K(Fq). These extractors are the
modified versions of the extractors SEJ and PEJ. Provided a point K is
chosen uniformly at random in K, the element extracted from the point
K is statistically close to a uniformly random variable in Fq.

Keywords: Jacobian, Hyperelliptic curve, Kummer surface, Determin-
istic extractor.

1 Introduction

A deterministic extractor for a set S is a function that converts a random point
on S to a bit-string of fixed length that is statistically close to uniformly random.
In this paper, we propose two simple and efficient deterministic extractors for
J(Fq), the Jacobian of a hyperelliptic curve H of genus 2 defined over Fq, for
some odd q. Our first extractor, SEJ, called sum extractor, for a given point D
on J(Fq), outputs the sum of abscissas of rational points on H in the support
of D, considering D as a reduced divisor. Similarly the second extractor, PEJ,
called product extractor, for a given point D on the J(Fq), outputs the product
of abscissas of rational points in the support of D. Provided that the point D is
chosen uniformly at random in J(Fq), the element extracted from the point D
is indistinguishable from a uniformly random variable in Fq.

Let K be the Kummer surface associated to the Jacobian of H over Fq. Then
there is a map κ from J(Fq) to K(Fq), so that a point and it’s opposite in
J(Fq) are mapped to the same value. Using this map, we propose two simple

S.D. Galbraith (Eds.): Cryptography and Coding 2007, LNCS 4887, pp. 313–335, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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and efficient deterministic extractors, SEK and PEK, for the Kummer surface K.
If a point K is chosen uniformly at random in K, the element extracted from
the point K is statistically close to a uniformly random variable in Fq.

The use of hyperelliptic curves in public key cryptography was first intro-
duced by Koblitz in [15]. The security of hyperelliptic cryptosystems is based
on the difficulty of discrete logarithm problem in the Jacobian of these curves.
Hyperelliptic curves of genus 2 are undergoing intensive study. They were shown
to be competitive with elliptic curves in speed and security. Various researchers
have been optimizing genus 2 arithmetic (see [2,16,17]). The security of genus
2 hyperelliptic curves is assumed to be similar to that of elliptic curves of the
same group size (e.g see [10]).

The use of Kummer surface associated to the Jacobian of a genus 2 curve is
proposed for faster arithmetic (see [7,11,16]). The scalar multiplication on the
Jacobian can be used to define a scalar multiplication on the Kummer surface.
It could be used to construct a Diffie-Hellman protocol (see [21]). In addition,
it is shown in [21], solving the discrete logarithm problem on the Jacobian is
polynomial time equivalent to solving the discrete logarithm problem on the
kummer surface.

The problem of converting random points of a variety (e.g a curve or Jaco-
bian of a curve) into random bits has several cryptographic applications. Such
applications are key derivation functions, key exchange protocols and design
of cryptographically secure pseudorandom number generators. As examples we
can mention the well-known Elliptic Curve Diffie-Hellman protocol and Diffie-
Hellman protocol in genus 2. By the end of Diffie-Hellman protocol, the parties
agree on a common secret element of the group, which is indistinguishable from
a uniformly random element under the decisional Diffie-Hellman assumption
(denoted by DDH). However the binary representation of the common secret el-
ement is distinguishable from a uniformly random bit-string of the same length.
Hence one has to convert this group element into a random-looking bit-string.
This can be done using a deterministic extractor.

At the moment, several deterministic randomness extractors for elliptic curves
are known. Kaliski [14] shows that if a point is taken uniformly at random
from the union of an elliptic curve and its quadratic twist then the abscissa of
this point is uniformly distributed in the finite field. Then Chevassut et al. [5],
proposed the TAU technique. This technique allows to extract almost all the bits
of the abscissa of a point of the union of an elliptic curve and its quadratic twist.
Gürel [12] proposed an extractor for an elliptic curve defined over a quadratic
extension of a prime field. It extracts almost half of the bits of the abscissa of a
point on the curve. Then, Farashahi and Pellikaan proposed the similar extractor,
yet more general, for hyperelliptic curves defined over a quadratic extension of a
finite filed in odd characteristic [8]. Furthermore, their result for elliptic curves
improves the result of [12]. Two deterministic extractors for a family of binary
elliptic curves are proposed by Farashahi et al. [9]. It is shown that half of the
bits of the abscissa of a point on the curve can be extracted. They also proposed
two deterministic extractors for the main subgroup of an ordinary elliptic curve
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that has minimal 2-torsion. In our knowledge, up to now, no extractor is defined
for the Jacobian of a hyperelliptic curve.

We organize the paper as follows. In the next section we introduce some
notations and recall some basic definitions. In Section 3, we propose extractors
SEJ and PEJ for J(Fq), the Jacobian of a genus 2 hyperelliptic curve H over
Fq. We show that the outputs of these extractors, for a given uniformly random
point of J(Fq), are statistically close to a uniformly random variable in Fq. For
the analysis of these extractors, we need some bounds on the cardinalities of
SEJ−1(a) and PEJ−1(b), for all a, b ∈ Fq. We give our estimates for them in
Theorems 2 and 3. Then, in Section 4, we give the proofs of the main Theorems
2 and 3. In Section 5, we propose two extractors SEK and PEK for K(Fq), the
Kummer surface related to J(Fq). These extractors are modified versions of the
previous extractors, using the map κ from J(Fq) to K(Fq). We conclude our
result in Section 6. Furthermore, in appendix, we introduce some corresponding
problems for the proof of the main Theorem 2.

2 Preliminaries

Let us define the notations and recall the basic definitions that are used through-
out the paper.

Notation. Denote by Zn the set of nonnegative integers less than n. A field is
denoted by F and its algebraic closure by F. Denote by F

∗ the set of nonzero
elements of F. The finite field with q elements is denoted by Fq, and its algebraic
closure by Fq. Let C be a curve defined over Fq, then the set of Fq-rational points
on C is denoted by C(Fq). The x-coordinate of a point P on a curve is denoted
by xP . The cardinality of a finite set S is denoted by #S. We make a distinction
between a variable x and a specific value x in F.

2.1 Finite Field Notation

Consider the finite fields Fq and Fq2 , where q = pk, for some odd prime number
p and positive integer k. Fix a polynomial representation Fq2 ∼= Fq[t]/(t2 − α),
where α is not a quadratic residue in Fq. Then Fq2 is a vector space over Fq

which is generated by the basis {1, t}. That means every element x in Fq2 can
be represented in the form x = x0 + x1t, where x0 and x1 are in Fq.

Let φ : Fq −→ Fq be the Frobenius map defined by φ(x) = xq .

2.2 Hyperelliptic Curves

Definition 1. An absolutely irreducible nonsingular curve H of genus at least
2 is called hyperelliptic if there exists a morphism of degree 2 from H to the
projective line.
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Theorem 1. Let H be a hyperelliptic curve of genus g over Fq, where q is odd.
Then H has a plane model of the form

y2 = f(x),

where f is a square-free polynomial and 2g + 1 ≤ deg(f) ≤ 2g + 2. The plane
model is singular at infinity. If deg(f) = 2g+1 then the point at infinity ramifies
and H has only one point at infinity. If deg(f) = 2g + 2 then H has zero or two
Fq-rational points at infinity.

Proof. See [1,6]. �

In this paper we consider a hyperelliptic curve H that has only one point at
infinity. One calls H an imaginary hyperelliptic curve.

2.3 Jacobian of a Hyperelliptic Curve

Let H be an imaginary hyperelliptic curve of genus g over Fq, where q is odd.
Then H has a plane model of the form y2 = f(x), where f is a square-free
polynomial and deg(f) = 2g + 1. For any subfield K of Fq containing Fq, the set

H(K) = {(x, y) : x, y ∈ K, y2 = f(x)} ∪ {P∞},

is called the set of K-rational points on H. The point P∞ is called the point at
infinity for H. A point P on H, also written P ∈ H, is a point P ∈ H(Fq). The
negative of a point P = (x, y) on H is defined as −P = (x, −y) and −P∞ = P∞.

Definition 2. A divisor D on H is a formal sum of points on H

D =
∑

P∈H
mP P,

where mP ∈ Z, and only a finite number of the mP are nonzero. The degree of D
is defined by degD =

∑
P∈H mP P . The divisor D is said to be defined over K, if

for all automorphisms ϕ in the Galois group of K, ϕ(D) =
∑

P∈H mP ϕ(P ) = D,
where ϕ(P ) = (ϕ(x), ϕ(y)) if P = (x, y) and ϕ(P∞) = P∞.

The set of all divisors on H defined over K, denoted by DivH(K), forms an
additive abelian group under the addition rule

∑

P∈H
mP P +

∑

P∈H
nP P =

∑

P∈H
(mP + nP )P.

The set Div0
H(K) of all divisors on H of degree zero defined over K is a subgroup

of DivH(K). In particular, Div0
H = Div0

H(K).
Let K[H] be the coordinate ring of the plain model of H over K. Then the

function field of H over K is the field of fractions K(H) of K[H]. For a polynomial
R in K[H], the divisor of R is defined by div(R) =

∑
P∈H ordP (R)P , where

ordP (R) is the order of vanishing of R at P . For a rational function R = F/G,
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where F , G ∈ K[H], the divisor of R is defined by div(R) = div(F ) − div(G)
and is called a principal divisor. The group of principal divisors on H over K is
denoted by PH(K) = {div(R) : R ∈ K(H)}. Specially PH = PH(K) is called the
group of principal divisors on H.

Definition 3. The Jacobian of H over K is defined by

JH(K) = Div0
H(K)/PH(K).

Similarly, the Jacobian of H is defined by JH = Div0
H/PH.

For each nontrivial class of divisors in JH(K), there exist a unique divisor D on
H over K of the form

D =
r∑

i=1

Pi − rP∞,

where Pi = (xi, yi) �= P∞, Pi �= −Pj, for i �= j, and r ≤ g. Such a divisor is
called a reduced divisor on H over K. By using Mumford’s representation [19],
each reduced divisor D on H over K can be uniquely represented by a pair of
polynomials [u(x), v(x)], u, v ∈ K[x], where u is monic, deg(v) < deg(u) ≤ g,
and u | (v2 − f). Precisely u(x) =

∏r
i=1(x − xi) and v(xi) = yi. The neutral

element of JH(K), denoted by O, is represented by [1, 0]. Cantor’s algorithm, [3],
efficiently computes the sum of two reduced divisors in JH(K) and expresses it
in reduced form.

2.4 Kummer Surface

Let H be an imaginary hyperelliptic curve of genus 2 defined over Fq, for odd q.
Then H has a plane model of the form

y2 = f(x) = x5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0, (1)

where fi ∈ Fq and f is a square-free polynomial. Then for the curve H , there
exist a quartic surface K in P

3, called the Kummer surface, which is given by
the equation

A(k1, k2, k3)k2
4 + B(k1, k2, k3)k4 + C(k1, k2, k3) = 0,

where

A(k1, k2, k3) =k2
2 − 4k1k3,

B(k1, k2, k3) = − 2(2f0k
3
1 + f1k

2
1k2 + 2f2k

2
1k3 + f3k1k2k3 + 2f4k1k

2
3 + k2k

2
3),

C(k1, k2, k3) = − 4f0f2k
4
1 + f2

1 k4
1 − 4f0f3k

3
1k2 − 2f1f3k

3
1k3 − 4f0f4k

2
1k

2
2

+ 4f0k
2
1k2k3 − 4f1f4k

2
1k2k3 + 2f1k

2
1k

2
3 − 4f2f4k

2
1k

2
3 + f2

3 k2
1k

2
3

− 4f0k1k
3
2 − 4f1k1k

2
2k3 − 4f2k1k2k

2
3 − 2f3k1k

3
3 + k4

3 .

Let J(Fq) be the Jacobian of H over Fq (see Subsection 2.3). Then there is a
map

κ : J(Fq) −→ K(Fq),
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where κ(D) = κ(−D), for all D ∈ J(Fq) and κ(O) = (0, 0, 0, 1). This map does
not preserve the group structure, however, endows a pseudo-group structure on
K (see [4]). In particular, a scalar multiplication on the image of κ is defined by

mκ(D) = κ(mD),

for m ∈ Z and D ∈ J(Fq). It could be used for a Diffie-Hellman protocol (see
[21]). Furthermore, the above definition can be extended to have a scalar multi-
plication on K. Since each point on K can be pulled back to the Jacobian of H
or to the Jacobian of the quadratic twist of H .

2.5 Deterministic Extractor

In our analysis we use the notion of a deterministic extractor, so let us recall it
briefly. For general definition of extractors we refer to [20,22].

Definition 4. Let X and Y be S-valued random variables, where S is a finite
set. Then the statistical distance Δ(X, Y ) of X and Y is

Δ(X, Y ) = 1
2

∑
s∈S |Pr[X = s] − Pr[Y = s] | .

Let US denote a random variable uniformly distributed on S. We say that a
random variable X on S is δ-uniform, if Δ(X, US) ≤ δ.

Note that if the random variable X is δ-uniform, then no algorithm can dis-
tinguish X from US with advantage larger than δ, that is, for all algorithms
D : S −→ {0, 1}

| Pr[D (X) = 1] − Pr[D (US) = 1]| ≤ δ.

See [18].

Definition 5. Let S, T be finite sets. Consider the function Ext : S −→ T . We
say that Ext is a deterministic (T, δ)-extractor for S if Ext(US) is δ-uniform
on T . That means

Δ(Ext(US), UT ) ≤ δ.

In the case that T = {0, 1}k, we say Ext is a δ-deterministic extractor for S.

In this paper we consider deterministic (Fq, δ)-extractors. Observe that, con-
verting random elements of Fq into random bit strings is a relatively easy prob-
lem. For instance, one can represent an element of Fq by a number in Zq and
convert this number to a bit-string of a length equal or very close to the bit
length of q (e.g. see [13]). Furthermore, if q is close to a power of 2, that is,
0 ≤ (2n − q)/2n ≤ δ for a small δ, then the uniform element UFq is statistically
close to n uniformly random bits. The following simple lemma is a well-known
result (the proof can be found, for instance, in [5]).

Lemma 1. Under the condition that 0 ≤ (2n−q)/2n ≤ δ, the statistical distance
between UFq and U2n is bounded from above by δ.
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3 Extractors for Jacobian

In this section we propose two extractors for the Jacobian of a hyperelliptic curve
of genus 2 in odd characteristic. Then we analyse them.

We recall that H is an imaginary hyperelliptic curve of genus 2 defined over
Fq, for odd q, and J(Fq) is the Jacobian of H over Fq. The hyperelliptic curve
H has a plane model of the form y2 = f(x), where f is a monic square-free
polynomial of degree 5 (see equation (1)).

3.1 Sum Extractor for Jacobian

Definition 6. The sum extractor SEJ for the Jacobian of H over Fq is defined
as the function SEJ : J(Fq) −→ Fq, by

SEJ(D) =

{ ∑r
i=1 xPi if D =

∑r
i=1 Pi − rP∞, 1 ≤ r ≤ 2

0 if D = O.

Remark 1. By using Mumford’s representation for the points of J(Fq), the func-
tion SEJ is defined as

SEJ(D) =

⎧
⎪⎨

⎪⎩

− u1 if D = [x2 + u1x + u0, v1x + v0],
− u0 if D = [x + u0, v0],
0 if D = [1, 0].

The following theorem gives the estimates for #SEJ−1(a), for all a in Fq. In
Subsection 3.3, we use the result of this theorem to analyse the extractor SEJ.
We give a proof of Theorem 2 in Section 4.

Theorem 2. For all a ∈ F
∗
q,

∣
∣#SEJ−1(a) − q

∣
∣ ≤ 8

√
q + 1

and ∣
∣#SEJ−1(0) − (q + 1)

∣
∣ ≤ 8

√
q + 1.

3.2 Product Extractor for Jacobian

Definition 7. The product extractor PEJ for the Jacobian of H over Fq is de-
fined as the function PEJ : J(Fq) −→ Fq, by

PEJ(D) =

{ ∏r
i=1 xPi if D =

∑r
i=1 Pi − rP∞, 1 ≤ r ≤ 2

0 if D = O.

Remark 2. By using Mumford’s representation for the points of J(Fq), the func-
tion PEJ is defined as

PEJ(D) =

⎧
⎪⎨

⎪⎩

u0 if D = [x2 + u1x + u0, v1x + v0],
− u0 if D = [x + u0, v0],
0 if D = [1, 0].
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The next theorem shows the estimates for #PEJ−1(b), for all b in Fq.

Theorem 3. Let b ∈ F
∗
q. Let If = {z ∈ F

∗
q : f1 = z2, f2 = zf4}. Then

∣
∣#PEJ−1(b) − q

∣
∣ ≤

⎧
⎪⎨

⎪⎩

8
√

q + 3 if f0 �= 0,

6
√

q + 3 if f0 = 0 and b /∈ If ,

q + 4
√

q if f0 = 0 and b ∈ If .

For b = 0, ∣
∣#PEJ−1(0) − (eq + 1)

∣
∣ ≤ 4e

√
q ,

where e = #{(x, y) ∈ H(Fq) : x = 0}.

3.3 Analysis of the Extractors

In this subsection we show that provided the divisor D is chosen uniformly at
random in J(Fq), the element extracted from the divisor D by SEJ or PEJ is
indistinguishable from a uniformly random element in Fq.

Let A be a Fq-valued random variable that is defined as

A = SEJ(D), for D ∈R J(Fq).

Proposition 1. The random variable A is statistically close to the uniform ran-
dom variable UFq .

Δ(A, UFq) = O(
1

√
q
).

Proof. Let a ∈ Fq. For the uniform random variable UFq , Pr[UFq = a] = 1/q.
Also for the Fq-valued random variable A,

Pr[A = a] =
#SEJ−1(a)

#J(Fq)
.

The genus of H is 2, so by Hasse-Weil’s Theorem we have

(
√

q − 1)4 ≤ #J(Fq) ≤ (
√

q + 1)4.

Theorem 2 gives the bound for #SEJ−1(a), for all a ∈ Fq. Hence

Δ(A, UFq) =
1
2

∑

a∈Fq

∣
∣Pr[A = a] − Pr[UFq = a]

∣
∣

=
1
2

∑

a∈Fq

∣
∣∣
∣
#SEJ−1(a)

#J(Fq)
− 1

q

∣
∣∣
∣

=

∣∣q#SEJ−1(0) − #J(Fq)
∣∣

2q#J(Fq)
+

∑

a∈F∗
q

∣∣q#SEJ−1(a) − #J(Fq)
∣∣

2q#J(Fq)
.
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Then

Δ(A, UFq) ≤
(12q

√
q − 4q + 4

√
q − 1) + (q − 1)(12q

√
q − 5q + 4

√
q − 1)

2q(
√

q − 1)4

=
12q

√
q − 5q + 4

√
q

2(
√

q − 1)4
=

6 + ε(q)
√

q
,

where ε(q) = 43q
√

q−68q+48
√

q−12
2(

√
q−1)4 . If q ≥ 570, then ε(q) < 1. �

Corollary 1. SEJ is a deterministic (Fq, O( 1√
q ))-extractor for J(Fq).

Proof. Proposition 1 concludes the proof of this corollary. �

Corollary 2. PEJ is a deterministic (Fq, O( 1√
q ))-extractor for J(Fq).

Proof. The result of Theorem 3 implies the proof of this corollary. �

4 Proofs of Theorems 2 and 3

In this section we give the proofs of Theorems 2 and 3. In other words, we are
going to count the cardinalities of #SEJ−1(a), #PEJ−1(b), for all a, b ∈ Fq. In
Subsection 4.1, we recall some notes on the Jacobian of H over Fq. We give the
proof of Theorem 2 in Subsection 4.2. Then, we sketch the proof of Theorem 3
in Subsection 4.3.

4.1 Notes on the Jacobian of H over Fq

We recall from Section 3 that J(Fq) is the Jacobian of H over Fq. We partition
J(Fq) as J(Fq) = J0 ∪ J1 ∪ J2, where J0 = {O} and Jr, for r = 1, 2 is defined as

Jr = {D ∈ J(Fq) : D = [u(x), v(x)], deg(u) = r}.

Recall that O is represented by [1, 0].
Note that D is defined over Fq, that means for all automorphisms ϕ in the

Galois group of Fq, ϕ(D) = D.
Let D ∈ J1, then D = P −P∞, where P = (xP , yP ) ∈ H(Fq). The Mumford’s

representation for D is [x − xP , yP ].
Let D ∈ J2, then D = P + Q − 2P∞, where P, Q �= P∞ and P �= −Q. The

divisor D is represented by [u(x), v(x)], such that u(x) = (x − xP )(x − xQ)
and v is the line through P and Q. Since D is defined over Fq, then φ(D) =
φ(P ) +φ(Q) − 2φ(P∞) = D, where φ is the Frobenius map. There are two cases
for D.

– Suppose φ(P ) = P . Since φ(D) = D, then φ(Q) = Q. Thus P , Q ∈ H(Fq).
That means

D = P + Q − 2P∞, P, Q ∈ H(Fq), P, Q �= P∞, P �= −Q.

In this case the polynomial u is reducible over Fq.
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– Suppose φ(P ) �= P . Since φ(D) = D, so φ(P ) = Q and φ(Q) = P . Then
φ(φ(P )) = P . Hence P ∈ H(Fq2). That means

D = P + φ(P ) − 2P∞, P ∈ H(Fq2), P �= P∞, φ(P ) �= ±P.

In this case the polynomial u is irreducible over Fq.

Let
J = {(P, Q) : P, Q ∈ H(Fq), P, Q �= P∞, Q �= −P},

J φ = {(P, φ(P )) : P ∈ H(Fq2), P �= P∞, φ(P ) �= −P}.

Lemma 2. Let σ : J −→ J2 be the map defined by

σ(P, Q) = P + Q − 2P∞,

and let σφ : J φ −→ J2 be the map defined by

σφ(P, φ(P )) = P + φ(P ) − 2P∞.

Then #σ−1(D) + #σ−1
φ (D) = 2, for all D ∈ J2.

Proof. Let D ∈ J2. Then we have the following cases.

1. Assume D = P +Q−2P∞, such that P, Q ∈ H(Fq), P, Q �= P∞ and Q �= P .
Clearly σ−1(D) = {(P, Q), (Q, P )} and σ−1

φ (D) = ∅.
2. Assume D = P+φ(P )−2P∞, such that P ∈ H(Fq2), P �= P∞ and φ(P ) �= P .

Clearly σ−1(D) = ∅ and σ−1
φ (D) = {(P, φ(P )), (φ(P ), P )}.

3. Assume D = 2P − 2P∞, where P ∈ H(Fq), P �= P∞. It is easy to see that
σ−1(D) = σ−1

φ (D) = {(P, P )}. �

4.2 Proof of Theorem 2

For the proof of Theorem 2, we need several propositions. First, by Proposition 2,
we transform our problem to the problem of computing sum of the cardinalities
of corresponding sets in Definition 8. Second, in proposition 3, we give a formula
for this sum in terms of the cardinalities of some curves. Finally, by using Hasse-
Weil Theorem, we obtain tight estimates for #SEJ−1(a), for all a ∈ Fq.

Definition 8. Let a ∈ Fq. Define

Σa = {(P, Q) : P, Q ∈ H(Fq), xP + xQ = a},

Σφ
a = {(P, φ(P )) : P ∈ H(Fq2), xP + xφ(P ) = a}.

Proposition 2. For all a ∈ Fq,

#(SEJ−1(a) ∩ J2) =
#Σa + #Σφ

a

2
− 1.
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Proof. Let a ∈ Fq. Let Sa = σ−1(SEJ−1(a) ∩ J2) and Sφ
a = σ−1

φ (SEJ−1(a) ∩ J2)
(see Lemma 2). Then Σa = Sa ∪ Ea and Σφ

a = Sφ
a ∪ Eφ

a , where Ea = {(P, Q) :
(P, Q) ∈ Σa, Q = −P} and Eφ

a = {(P, φ(P )) : (P, φ(P )) ∈ Σφ
a , φ(P ) = −P}.

Since Sa and Ea are disjoint, so #Σa = #Sa+#Ea. Similarly, #Σφ
a = #Sφ

a +#Eφ
a .

Assume (P, −P ) is a point of Ea or Eφ
a , then xP = a

2 . Obviously P is a point
of H(Fq) or H(Fq2). Suppose f(a

2 ) = 0. Then P ∈ H(Fq) and P = −P . That
means Ea = Eφ

a = {(P, P )}. Now, suppose f(a
2 ) �= 0. So P �= −P . If P ∈ H(Fq),

then Ea = {(P, −P ), (−P, P )} and Eφ
a = ∅. Otherwise, P is a point of H(Fq2).

Thus φ(P ) = −P . Hence Ea = ∅ and Eφ
a = {(P, −P ), (−P, P )}. In other words

#Ea + #Eφ
a = 2.

Lemma 2 implies that #Sa + #Sφ
a = 2#(SEJ−1(a) ∩ J2). That concludes the

proof of this proposition. �

Proposition 2 gives the estimate for the cardinality of SEJ−1(a), for a ∈ Fq, in
terms of the sum of the cardinalities of Σa and Σφ

a . Now, we are dealing to
have a tight estimate for #Σa + #Σφ

a , for all a ∈ Fq. In order to do that, we
define a curve Xa, for a ∈ Fq. Then, in Proposition 3, we give a formula for
#Σa +#Σφ

a in terms of the cardinalities of H(Fq) and Xa(Fq). After that, using
the Hasse-Weil’s Theorem, we obtain a tight estimate for #Σa + #Σφ

a .
The hyperellitic curve H has the plane model defined by

y2 = f(x) =
5∏

i=1

(x − λi), (2)

where λi are pairwise distinct elements of Fq. (see equation (1)). Define the two-
variable polynomial Φ ∈ Fq[x0,x1] as Φ(x0,x1) = f(x0)f(x1). Clearly Φ is a
symmetric polynomial. Let a = x0 + x1 and b = x0x1. Then from equation (2),
we obtain

Φ(x0,x1) =
5∏

i=1

((x0 − λi)(x1 − λi)) =
5∏

i=1

(x0x1 − λi(x0 + x1) + λ2
i )

Define the two-variable polynomial Ψ in Fq[a,b] by

Ψ(a,b) =
5∏

i=1

(b − λia + λ2
i ). (3)

For a ∈ Fq, let Xa be the affine curve defined over Fq, by the equation

y2 = Ψa(b) = Ψ(a,b). (4)

Proposition 3. Let a ∈ Fq. Then

#Σa + #Σφ
a = 2(#H(Fq) + #Xa(Fq) − q − 1).

Proof. See Proposition 12. �
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Clearly the affine curve Xa is absolutely irreducible, for all a ∈ Fq. The curve Xa

is nonsingular for almost all a ∈ Fq. Furthermore, the genus of the nonsingular
model of Xa is at most 2. By using the Hasse-Weil’s bound for the nonsingular
model of Xa, we obtain an estimate for #Xa(Fq).

Proposition 4. For all a ∈ Fq,

|#Xa(Fq) − q| ≤ 4
√

q.

Proof. See Subsection B.1. �

Proof (Theorem 2). Let a ∈ Fq. Proposition 2 shows that

#(SEJ−1(a) ∩ J2) =
#Σa + #Σφ

a

2
− 1.

From Proposition 3, we have

#Σa + #Σφ
a = 2(#H(Fq) + #Xa(Fq) − q − 1).

Then by using Hasse-Weil’s bound for H we obtain

|#H(Fq) − q − 1| ≤ 4
√

q.

Furthermore, from Proposition 4 we have

|#Xa(Fq) − q| ≤ 4
√

q.

Hence ∣
∣#(SEJ−1(a) ∩ J2) − q

∣
∣ ≤ 8

√
q.

Clearly #(SEJ−1(a)∩J1) equals 0, 1 or 2. If a = 0, then #(SEJ−1(a)∩J0) equals
1, otherwise equals 0. So the proof of Theorem 2 is completed. �

4.3 Proof of Theorem 3

The proof of Theorem 3 is similar to the proof of Theorem 2. First, in Proposition
5, we give the estimate for the cardinality of PEJ−1(b), for b ∈ F

∗
q , in terms of

the sum of the cardinalities of Πb and Πφ
b . Second, in Proposition 6, we give a

relation between #Σa+#Σφ
a and the cardinalities of H(Fq) and Xa(Fq). Finally,

Hasse-Weil Theorem concludes the proof of Theorem 3.

Definition 9. Let b ∈ F
∗
q. Define

Πb = {(P, Q) : P, Q ∈ H(Fq), xP xQ = b},

Πφ
b = {(P, φ(P )) : P ∈ H(Fq2), xP xφ(P ) = b}.

Proposition 5. For all b ∈ F
∗
q,

#(PEJ−1(b) ∩ J2) =
#Πb + #Πφ

b

2
− rb,

where rb equals the number of square roots of b in F
∗
q.
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Proof. The proof of this proposition is similar to the proof of Proposition 2. So
we leave it for the interested reader. �
Consider the polynomial Ψ ∈ Fq[a,b] defined by the equation (3). Let Xb be the
affine curve defined over Fq, by the equation

y2 = Ψb(a) =
5∏

i=1

(b − λia + λ2
i ), (5)

for b ∈ F
∗
q .

Proposition 6. Let b ∈ F
∗
q. Then

#Πb + #Πφ
b = 2(#H(Fq) + #Xb(Fq) − q − e),

where e = #{(x, y) ∈ H(Fq) : x = 0}.
Proof. The proof of this proposition is similar to the proof of Proposition 3. �
The affine curve Xb is absolutely irreducible and nonsingular, for almost all
b ∈ Fq. In fact the curve Xb is reducible if and only if λi = 0, for some i, and
b ∈ If , where If = {z ∈ F

∗
q : f1 = z2, f2 = zf4}. Provided the curve Xb is

absolutely irreducible, the genus of the nonsingular model of Xb is at most 2.
Then Hasse-Weil’s Theorem gives the estimates for #Xb(Fq).

Proposition 7. Let b ∈ Fq. Then

|#Xb(Fq) − q| ≤

⎧
⎪⎨

⎪⎩

4
√

q if f0 �= 0,

2
√

q if f0 = 0 and b /∈ If ,

q if f0 = 0 and b ∈ If .

Proof. See Subsection B.2. �

Proof (Theorem 3). Let b ∈ F
∗
q . Proposition 5 shows that

#(PEJ−1(b) ∩ J2) =
#Πb + #Πφ

b

2
− rb,

where rb equals the number of square roots of b in Fq. It is easy to see that
0 ≤ #(PEJ−1(b) ∩ J1) ≤ 2 and #(PEJ−1(b) ∩ J0) = 0. So

∣
∣#PEJ−1(b) − q

∣
∣ ≤

∣∣
∣#Πb + #Πφ

b − 2q
∣∣
∣

2
+ 2.

From Proposition 6, we have

#Πb + #Πφ
b = 2(#H(Fq) + #Xb(Fq) − q − e),

where e is the number of points on H(Fq) whose abscissa equals zero. Note that
0 ≤ e ≤ 2. Hence

∣
∣
∣#Πb + #Πφ

b − 2q
∣
∣
∣ ≤ 2 |#H(Fq) + #Xb(Fq) − 2q − 1| + 2.
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Hasse-Weil’s Theorem gives the bound for #H(Fq). Then Proposition 7 con-
cludes the proof of Theorem 3 for all b ∈ F

∗
q .

Now assume that b = 0. It is easy to see #PEJ−1(0) = e#H(Fq)−e+1, where
e equals the number of points of H(Fq) whose abscissa equals zero. So the proof
of Theorem 3 is completed. �

5 Extractors for Kummer Surface

Consider the hyperelliptic curve H that is defined in equation (1). Let K be the
Kummer surface related to J(Fq) (Jacobian of H over Fq). We recall that each
point of J(Fq) can be uniquely represented by at most 2 points on H . Then there
is a map

κ : J(Fq) −→ K(Fq)
P + Q − 2P∞ �−→ (1 : a : b : c)

P − P∞ �−→ (0 : 1 : xP : x2
P )

O �−→ (0 : 0 : 0 : 1),

where a = xP + xQ, b = xP xQ and

c =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B̃(a, b) − 2yP yQ

(xP − xQ)2
if P �= Q

C̃(a, b)
4y2

P

if P = Q,

with
B̃(a, b) = ab2 + f3ab + f1a + 2f4b

2 + 2f2b + 2f0,

C̃(a, b) = C(1, a, b).

5.1 Sum Extractor for Kummer Surface

In this subsection we define the sum extractor SEK for the Kummer surface K.
Then we define the sum extractor SEKJ as the restriction of SEK to the image of
κ. We briefly mention the analysis of these extractors.

Definition 10. The sum extractor SEK for the Kummer surface K is defined as
the function SEK : K(Fq) −→ Fq, by

SEK(k1 : k2 : k3 : k4) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k2

k1
if k1 �= 0,

k3

k2
if k1 = 0, k2 �= 0,

0 otherwise.

The following theorem gives the estimates for #SEK−1(a), for all a in Fq. By using
the result of this theorem, one can show that SEK is a deterministic (Fq, O( 1√

q ))-
extractor for K(Fq).
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Theorem 4. For all a ∈ F
∗
q,
∣
∣#SEK−1(a) − q

∣
∣ ≤ 4

√
q

and ∣
∣#SEK−1(0) − (q + 1)

∣
∣ ≤ 4

√
q.

Proof. Note that each point on K can be pulled back to the Jacobian of H or to
the Jacobian of the quadratic twist of H . Furthermore, the map κ is 2 : 1 on all
points except the points of order 2 in the Jacobian of H where it is 1 : 1. Then,
the proof of Theorem 2 and the application of that proof for the sum extractor
for the Jacobian of the quadratic twist of H conclude the proof of this Theorem.

�
The scalar multiplication on κ(J(Fq)) could be used for a variant of Diffie-
Hellman protocol on this set. For instance, consider the case that J(Fq) is a
cyclic group with generator Dg. Then κ(Dg) is the generator of κ(J(Fq)). That
brings us to define the following extractor for this set.

Definition 11. The sum extractor SEKJ for κ(J(Fq)), is defined as the restric-
tion of the extractor SEK to κ(J(Fq)).

The following theorem shows that #SEJ−1(a) = 2#SEKJ−1(a), for almost all
a ∈ Fq. One can show that SEKJ is a deterministic (Fq, O( 1√

q ))-extractor for
κ(J(Fq)) (see Subsection 3.3).

Proposition 8. For all a ∈ Fq,

#SEKJ−1(a) =
#SEJ−1(a) + da

2
,

where da is the number of two torsion points of J(Fq) in SEJ−1(a).

Proof. The fact that the map κ is 2 : 1 on all points except the points of order 2
in the Jacobian of H where it is 1 : 1, concludes the proof of this proposition. �
Remark 3. It is easy to see that 0 ≤ da ≤ 3 and

∑
a∈Fq

da equals the number of
two torsion points of J(Fq), which is bounded by 16.

5.2 Product Extractor for Kummer Surface

In this subsection we define the product extractor PEK for the K. We briefly
mention the analysis of this extractor.

Definition 12. The product extractor PEK for the Kummer surface K is defined
as the function PEK : K(Fq) −→ Fq, by

PEK(k1 : k2 : k3 : k4) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k3

k1
if k1 �= 0,

k3

k2
if k1 = 0, k2 �= 0,

0 otherwise.
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The next theorem gives the estimates for #PEK−1(b), for all b in Fq. The result of
this theorem implies that PEK is a deterministic (Fq, O( 1√

q ))-extractor for K(Fq).

Theorem 5. Let b ∈ Fq. Let If = {z ∈ F
∗
q : f1 = z2, f2 = zf4}. Then

∣
∣#PEK−1(b) − q

∣
∣ ≤

⎧
⎪⎨

⎪⎩

4
√

q + 1 if f0 �= 0,

2
√

q + 1 if f0 = 0 and b /∈ If ,

q − 1 if f0 = 0 and b ∈ If .

Furthermore, one can define the product extractor PEKJ for κ(J(Fq)) as the
restriction of the extractor PEK to κ(J(Fq)).

6 Conclusion

We propose the sum and product extractors, SEJ and PEJ, for J(Fq), the Jacobian
of a genus 2 hyperelliptic curve H over Fq. We show that the outputs of these
extractors, for a given uniformly random point of J(Fq), are statistically close
to a uniformly random variable in Fq. To show the latter we need some bounds
on the cardinalities of SEJ−1(a) and PEJ−1(b), for all a, b ∈ Fq. To have these
estimates, we introduce some corresponding problems. In new problems, we are
looking for bounds on the cardinality of some curves. We give our estimates in
Theorems 2 and 3 using Hasse-Weil Theorem.

Thanks to the Kummer surface K, that is associated to the Jacobian of H over
Fq, we propose the sum and product extractors, SEK and PEK, for K(Fq). These
extractors are the modified versions of the extractors SEJ and PEJ. Provided a
point K is chosen uniformly at random in K, the element extracted from the
point K is statistically close to a uniformly random variable in Fq.

Our proposed extractors can be generalized for the Jacobian of hyperelliptic
curves of higher genus.

Acknowledgment. The author thanks to the anonymous referees for several
useful suggestions.
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Appendix

A Corresponding Problems

In this section we are dealing with computing the bounds for the cardinalities
of Σa and Σφ

a , for a ∈ Fq (see Definition 8). We reconsider Definition 8 related
to an affine curve with an arbitrary genus. In particular, the sum of Σa and Σφ

a

are related to subsets of points of the Jacobian of a genus 2 hyperelliptic (see
Proposition 2).

Let C be an affine curve that is defined over Fq by the equation

y2 = f(x),

http://eprint.iacr.org/
http://eprint.iacr.org/
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where f(x) ∈ Fq[x] is a monic polynomial of a positive degree d. Let a ∈ Fq. We
recall that

Σa = {(P, Q) : P, Q ∈ C(Fq), xP + xQ = a},

Σφ
a = {(P, φ(P )) : P ∈ C(Fq2), xP + xφ(P ) = a}.

Note that we reconsider Definition 8 that is now related to the affine curve C.

A.1 Cardinality of Σa

For an element a ∈ Fq, the set Σa includes the ordered pairs of points on C(Fq),
such that the sum of their abscissas equals a.

Let Ca be the affine curve defined over Fq by the equation

z2 = fa(x) = f(a − x).

Let C�
a be the affine curve over Fq, that is defined by the following equation.

w2 = f�
a (x) = f(x)f(a − x).

The next proposition gives a formula for the cardinality of Σa in terms of the
numbers of Fq-rational points of curves C and C�

a .

Lemma 3. Define

Ta = {(P, Q) : P ∈ C(Fq), Q ∈ Ca(Fq), xP = xQ}.

Then #Ta = #Σa.

Proof. Clearly ((x, y), (x′, y′)) ∈ T if and only if ((x, y), (a − x′, y′)) ∈ Σa. �

Lemma 4. Define the function πTa : Ta −→ Fq by πTa(P, Q) = xP . Define the
projection map πC : C(Fq) −→ Fq by πC(P ) = xP . Similarly define the projection
maps πCa and πC�

a
, for the curves Ca, C�

a. Then

#π−1
C (x) + #π−1

Ca
(x) + #π−1

C�
a

(x) = 2 + #π−1
Ta

(x),

for all x ∈ Fq.

Proof. Define m(x) = #π−1
Ta

(x) and r(x) = #π−1
C (x) + #π−1

Ca
(x) + #π−1

C�
a

(x), for
x ∈ Fq. We shall prove that r(x) = 2 + m(x), for all x ∈ Fq.

Let x ∈ Fq. Let XTa = πTa(Ta). First we assume that x ∈ XTa and f�
a (x) �= 0.

Then there exist points P = (x, y) ∈ C(Fq) and Q = (x, z) ∈ Ca(Fq). Let R =
(x, w), where w = yz. So R is a point on C�

a(Fq). Note that y, z and w are nonzero
elements in Fq. So −P = (x, −y) �= P , also −Q �= Q and −R �= R. Then it is
easy to see that π−1

C (x) = {P, −P}, π−1
Ca

(x) = {Q, −Q} and π−1
C�

a
(x) = {R, −R}.

So r(x) = 6. Also π−1
T (x) = {(P, Q), (P, −Q), (−P, Q), (−P, −Q)}. That means

m(x) = 4.
Second we assume that x ∈ Fq \ XTa and f�

a (x) �= 0. Since x /∈ XTa , then
π−1

T (x) = ∅ and m(x) = 0. If there exist a point P = (x, y) ∈ C(Fq) then
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π−1
C (x) = {P, −P} and π−1

Ca
(x) = ∅, since x /∈ XTa . Also π−1

C�
a

(x) = ∅, since if
there exist a point R = (x, w) ∈ C�

a(Fq), then (x, w/y) ∈ Ca(Fq), which contra-
dicts the assumption that x /∈ XTa . Hence r(x) = 2. Similarly if there exist a
point Q = (x, z) ∈ Ca(Fq), then π−1

Ca
(x) = {Q, −Q} and π−1

C (x) = π−1
C�

a
(x) = ∅.

That means r(x) = 2. Therefore assume that there do not exist points on C(Fq)
or Ca(Fq), with the abscissa equals x. So f(x) and fa(x) are not squared in
Fq. Hence f�

a (x) is a squared in Fq. Let w be the square root of f�
a (x). Then

R = (x, z) ∈ C�
a(Fq). Therefore π−1

C�
a

(x) = {R, −R} and π−1
C (x) = π−1

Ca
(x) = ∅.

Thus r(x) = 2.
Third we assume that x ∈ XTa and f�

a (x) = 0. So π−1
C�

a
(x) = {P0}, where

P0 = (x, 0). Since f�
a (x) = 0, then f(x) = 0 or fa(x) = 0. If both of f(x) and

fa(x) are zero, then π−1
C (x) = π−1

Ca
(x) = {P0}. Also π−1

T (x) = {(P0, P0)}. Hence
in this case r(x) = 3 and m(x) = 1. If f(x) = 0, but fa(x) �= 0, then there
exist a point Q = (x, z) ∈ Ca(Fq), where z �= 0. Hence π−1

C (x) = {P0} and
π−1
Ca

(x) = {Q, −Q}. Also π−1
T (x) = {(P0, Q), (P0, −Q)}. Therefore r(x) = 4 and

m(x) = 2. Similarly in the case that f(x) �= 0 and fa(x) = 0, r(x) = 4 and
m(x) = 2.

Finally we assume that x ∈ Fq \ XTa and f�
a (x) = 0. So π−1

C�
a

(x) = {P0}. If
f(x) = 0, then π−1

C (x) = {P0} but π−1
Ca

(x) = ∅, since x /∈ XTa . Hence r(x) = 2
and m(x) = 0. If fa(x) = 0, then π−1

C (x) = ∅ and π−1
Ca

(x) = {P0}. Therefore
r(x) = m(x) + 2, for all x ∈ Fq. �

Proposition 9. For all a ∈ Fq,

#Σa = 2#C(Fq) + #C�
a(Fq) − 2q.

Proof. From Lemma 4, we have

#C(Fq) + #Ca(Fq) + #C�
a(Fq) =

∑

x∈Fq

(#π−1
C (x) + #π−1

Ca
(x) + #π−1

C�
a

(x))

=
∑

x∈Fq

(2 + #π−1
Ta

(x)) = 2q + #Ta.

From Lemma 3, we have #Ta = #Σa. Since #C(Fq) = #Ca(Fq), so the proof of
this proposition is finished. �

A.2 Cardinality of Σφ
a

For a ∈ Fq, let C′
a be the affine curve that is defined by the equation

y2 = Fa(x) = f(a + xt)f(a − xt).

Remark 4. The affine curve C′
a, for a ∈ Fq, is defined over Fq (see [8]). Further-

more,
#C′

a(Fq) = #{P ∈ C(Fq2) : xP = a + x1t, x1 ∈ Fq}.

Theorem 3 in [8] gives the bound for #C′
a(Fq).
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Proposition 10. #Σφ
a = #C′

a
2
(Fq), for all a ∈ Fq.

Proof. Let P ∈ C(Fq2), where xP = x0 + x1t and x0, x1 ∈ Fq. Since tq = −t,
so xP + xφ(P ) = 2x0. That means (P, φ(P )) ∈ Σφ

a if and only if x0 = a
2 . Then

Remark 4 concludes the proof of this proposition. �

A.3 On the Sum of #Σa and #Σφ
a

In the proof of Theorem 2 (Subsection 4.2), we are dealing to have a tight
estimate for #Σa + #Σφ

a , for all a ∈ Fq. Following the result of Propositions 9
and 10, one can obtain separate estimates for #Σa and #Σφ

a . Then add them
together to have an estimate for #Σa + #Σφ

a , for a ∈ Fq. But this estimate is
not tight. Using the result of Proposition 12, we give a tight estimate for it. For
the proof of Proposition 12, we need several lemmas.

We recall some details from Subsection 4.2. The two-variable polynomial Φ in
Fq[x0,x1] is defined as Φ(x0,x1) = f(x0)f(x1). Furthermore, the two-variable
polynomial Ψ in Fq[a,b] is defined by

Ψ(a,b) =
d∏

i=1

(b − λia + λ2
i ),

where λi are roots of f in Fq. For a ∈ Fq, the affine curve Xa is defined over Fq,
by the equation

y2 = Ψa(b) = Ψ(a,b).

Lemma 5. Define the map ρ : C�
a(Fq) −→ Fq by

ρ(x, y) = x(a − x).

Let b ∈ Fq. Assume ρ−1(b) �= ∅. Let (x, y) ∈ ρ−1(b). Then

#ρ−1(b) =

⎧
⎪⎨

⎪⎩

1, if x = a
2 and y = 0,

2, if x = a
2 and y �= 0 or x �= a

2 and y = 0,
4, otherwise.

Proof. Let (x, y) ∈ ρ−1(b). It is obvious that (x, y) ∈ ρ−1(b) if and only if
(x, −y) ∈ ρ−1(b). Furthermore x is a root of polynomial τ(x) = x2 − ax + b. �

Lemma 6. Define the map � : C′
a
2
(Fq) −→ Fq by

�(x, y) =
a2

4
− αx2.

Let b ∈ Fq. Assume �−1(b) �= ∅. Let (x, y) ∈ �−1(b). Then

#�−1(b) =

⎧
⎪⎨

⎪⎩

1, if x = 0 and y = 0,

2, if x = 0 and y �= 0 or x �= 0 and y = 0,

4, otherwise.
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Proof. Let (x, y) ∈ �−1(b). It is obvious that (x, y) ∈ �−1(b) if and only if
(x, −y) ∈ �−1(b). Furthermore x is a root of polynomial τ̃ (x) = αx2 − a2

4 + b.
Thus (x, y) ∈ �−1(b) if and only if (−x, y) ∈ �−1(b). �

Lemma 7. Define the projection map π : Xa(Fq) −→ Fq by π(b, y) = b. Then

#ρ−1(b) + #�−1(b) = 2#π−1(b),

for all b ∈ Fq.

Proof. Let b ∈ Fq, such that π−1(b) �= ∅. So there exist a point (b, y) ∈ Xa(Fq).
Hence y2 = Ψa(b) = Ψ(a, b). If y = 0, then π−1(b) = {(b, 0)}. So #π−1(b) = 1.
If y �= 0, then π−1(b) = {(b, y), (b, −y)}. Hence #π−1(b) = 2. Consider the
polynomials τ, τ̃ ∈ Fq[x], that are defined as τ(x) = x2 − ax + b and τ̃(x) =
αx2 − a2

4 + b. Let D be the discriminant of τ , that is D = a2 − 4b. Then αD is
the discriminant of τ̃ . We explain in three cases for D.

First, assume D = 0. Hence a
2 is the multiple root of τ . Since y2 = Ψ(a, b),

then y2 = Φ(a
2 , a

2 ) = (f(a
2 ))2. Thus (a

2 , y) ∈ C�
a(Fq) and (0, y) ∈ C′

a
2
(Fq). Since

D = 0, then b = a2

4 , so (a
2 , y) ∈ ρ−1(b) and (0, y) ∈ �−1(b). From Lemmas 5 and

6, if y = 0, then #ρ−1(b) = #�−1(b) = 1, else #ρ−1(b) = #�−1(b) = 2.
Second, assume D is a square in F

∗
q . So τ is reducible in Fq[x]. Let x0, x1 be

the distinct roots of τ in Fq. Then x0 +x1 = a and x0x1 = b. Since y2 = Ψ(a, b),
then y2 = Φ(x0, x1) = f(x0)f(x1). Thus (x0, y) and (x1, y) are points of C�

a(Fq)
and ρ−1(b). From Lemma 5, if y = 0, then #ρ−1(b) = 2, else ρ−1(b) = 4, since
x0 and x1 do not equal a

2 . Since D is a square in F
∗
q and α is a non-square in Fq,

then αD, the discriminant of τ̃ , is a non-square in F
∗
q . That means τ̃ (x) has no

root in Fq. So �−1(b) = ∅.
Third, assume D is a non-square in Fq. Hence τ(x) has no root in Fq. So

ρ−1(b) = ∅. Also αD is a square in F
∗
q . Thus τ̃ is reducible in Fq[x]. Let x0, x1 be

the distinct roots of τ̃ in Fq. Clearly x0 = −x1 and x0x1 = − D
4α . Let z0 = a

2 +x0t
and z1 = a

2 + x1t. Then z0 + z1 = a and z0z1 = b. Since y2 = Ψ(a, b), then
y2 = Φ(z0, z1) = f(z0)f(z1). So y2 = Fa

2
(x0) = Fa

2
(x1). Thus (x0, y) and (x1, y)

are points of C′
a
2
(Fq) and �−1(b). From Lemma 6, if y = 0, then #�−1(b) = 2,

else �−1(b) = 4, since x0 and x1 do not equal 0.
Now, let b ∈ Fq, such that π−1(b) = ∅. Then ρ−1(b) = �−1(b) = ∅. Since if

(x, y) ∈ ρ−1(b), then x(a − x) = b and (x, y) ∈ C�
a(Fq). So y2 = f(x)f(a − x).

Then y2 = Φ(x, a − x) = Ψ(a, b) = Ψa(b). Thus (b, y) ∈ Xa(Fq), which is a
contradiction. Also if (x, y) ∈ �−1(b), then a2

4 − αx2 = b and (x, y) ∈ C′
a
2
(Fq).

Hence y2 = f(a
2 + xt)f(a

2 − xt). Then y2 = Φ(a
2 + xt, a

2 − xt) = Ψ(a, b) = Ψa(b).
Thus (b, y) ∈ Xa(Fq), which is a contradiction. �

Proposition 11. #C�
a(Fq) + #C′

a
2
(Fq) = 2#Xa(Fq), for all a ∈ Fq.



334 R.R. Farashahi

Proof. Let a ∈ Fq. From Lemma 7, #ρ−1(b) + #�−1(b) = 2#π−1(b), for all
b ∈ Fq. Then

#C�
a(Fq) + #C′

a
2
(Fq) =

∑

b∈Fq

#ρ−1(b) +
∑

b∈Fq

#�−1(b)

=
∑

b∈Fq

2#π−1(b) = 2#Xa(Fq).

�

Proposition 12. Let a ∈ Fq. Then

#Σa + #Σφ
a = 2(#C(Fq) + #Xa(Fq) − q).

Proof. Propositions 9, 10 and 11 conclude the proof of this proposition. �

B Proofs of Propositions

In this section we prove Propositions 4 and 7.

B.1 Proof of Proposition 4

Proof (Proposition 4). Clearly the affine curve Xa is absolutely irreducible for all
a ∈ Fq. The affine curve Xa may be singular. Let σi,j = λi + λj , for all integers
i, j such that 1 ≤ i < j ≤ 5. Let sa be the number of σi,j that are equal to a.
Then the polynomial Ψa(b) has sa double roots, since λi are pairwise distinct.
That means Xa has sa singular points. Note that 0 ≤ sa ≤ 2. If sa = 0, then
Xa is is an absolutely nonsingular affine curve of genus 2. In fact, the genus of
the nonsingular model of Xa equals 2 − sa. By using Hasse-Weil bound for the
nonsingular model of Xa, we obtain

|#Xa(Fq) − q| ≤ 2(2 − sa)
√

q + sa ≤ 4
√

q.

So the proof of this proposition is completed. �

B.2 Proof of Proposition 7

Proof (Proposition 7). Let b ∈ Fq. Let δi,j = λiλj , for all integers i, j such that
1 ≤ i < j ≤ 5. Let sb be the number of δi,j that are equal to b. Then the
polynomial Ψb(a) has sb double roots, since λi are pairwise distinct.

If f(0) �= 0, then λi �= 0, for all integer 0 ≤ i ≤ 5. Then the degree of Ψb(a)
equals 5. So the affine curve Xb is absolutely irreducible for all b ∈ Fq. Since
Ψb(a) has sb double root, thus Xb has sb singular points. In fact, the genus of
the nonsingular model of Xb equals 2 − sb. By using Hasse-Weil bound for the
the number of Fq-rational points of the nonsingular model of Xb, we obtain

|#Xb(Fq) − q| ≤ 2(2 − sb)
√

q + sb ≤ 4
√

q.
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If f(0) = 0, then there exists an integer i such that λi = 0. If b = 0, clearly
#Xb(Fq) = q. Now assume that b �= 0. Then the degree of Ψb(a) equals 4. In this
case, one could show that, sb = 2 if and only if b ∈ If . If sb = 2, then Ψb(a) is
square, so the affine curve Xb is reducible. Hence we have only the trivial bound
for #Xb(Fq), that is

|#Xb(Fq) − q| ≤ q.

Otherwise sb ≤ 1. So Ψb(a) is a non-square. Hence the affine curve Xb is abso-
lutely irreducible. Furthermore Xb has sb singular points and the genus of the
nonsingular model of Xb equals 1 − sb. By using Hasse-Weil bound we obtain

|#Xb(Fq) − q| ≤ 2(1 − sb)
√

q + sb ≤ 2
√

q.

So the proof of this proposition is finished. �
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Abstract. The problem of constructing elliptic curves suitable for pair-
ing applications has received a lot of attention. One of the most general
methods to solve this problem is due to Scott. We propose a variant of
this method which replaces an exhaustive search with a Gröbner basis
calculation. This makes the method potentially able to generate a larger
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1 Introduction

Pairing-Based Cryptography has been a research area of great interest since the
work of Sakai, Oghishi and Kasahara [17], Joux [15] and Boneh and Franklin [7].

However, to make pairing computation feasible, we have to work with some
special curves, called “pairing-friendly” elliptic curves, in that the embedding
degree is relatively small and the curve has a large prime order subgroup. For a
survey of methods to construct pairing-friendly elliptic curves, we refer to [13].

One option is to use supersingular curves, but in this case, we are restricted to
an embedding degree � 6. Hence, the use of ordinary elliptic curves with small
embedding degree is very attractive, although these curves are very rare [3].

Now we give some notation that will be used throughout the paper. Let p be
a large prime, let E : y2 = x3 + ax + b be an elliptic curve over Fp and let t
be the trace of Frobenius so that n = #E(Fp) = p + 1 − t is the curve order.
Suppose r is a large prime factor of n and h = n/r a “small” integer called the
cofactor. Let k be the embedding degree with respect to r (i.e., r | (pk − 1)) and
let ρ = log(p)/ log(r).
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To obtain a suitable elliptic curve, we should choose parameters that not
only satisfy the required conditions for security and efficiency (see [13]), but
also satisfy the CM equation (1) below, so that we can construct an elliptic
curve using the Complex Multiplication (CM) method (see [2]). The problem is
therefore to find suitable parameters p, r, k, a, b such that pairing computation
is feasible and the system is secure.

A very common approach is to obtain polynomial families of parameters for
given embedding degree k and CM discriminant D. More precisely, one finds
polynomials P (x), R(x), T (x) with integer coefficients such that P (x) and R(x)
can represent primes and such that if x0 is such that p = P (x0) is a prime then
there is an elliptic curve E over Fp with complex multiplication of discriminant
D and with number of points divisible by R(x0) and the corresponding subgroup
has (at least, generically) embedding degree k.

The paper is organized as follows: Section 2 reviews the existing methods
for finding polynomial families of parameters, showing their characteristics and
restrictions. Section 3 presents Scott’s method [18] in detail. Section 4 presents
our improvement of the exhaustive search part of Scott’s method. Section 5 gives
a comparison between our method and Scott’s method. Section 6 concludes the
paper and proposes further research. Finally, Appendix A gives a step-by-step
example of our method obtained using MAGMA [8].

2 Some Existing Methods

The first polynomial families of parameters for ordinary elliptic curves with small
embedding degree were proposed by Miyaji, Nakabayashi and Takano [16] in
2001. In their work, they give families of ordinary elliptic curves with embedding
degree 3, 4 and 6. The restriction to k ≤ 6 is undesirable for higher security levels.
Freeman [12] extended this method to k = 10.

In 2002, Cocks and Pinch proposed a method to generate elliptic curves with
larger values of k using the CM method (see Chapter IX of [6]). In this method,
r is an input to the algorithm that generates p and t, so one can freely choose
r with very low Hamming weight, for example. One of the key ideas of their
method is to use equation (4) below and to obtain t from considering primitive
k-th roots modulo r. The main restriction in this method is that ρ ≈ 2, which
is considered too big for certain applications.

Brezing and Weng [9] gave a method to generate polynomial families by ex-
ploiting polynomials f(x) such that Q(ζk,

√
D) ∼= Q(x)/(f(x)). They also exploit

equation (4) to choose polynomials T (x) corresponding to elements of order k
in Q(x)/(f(x)). This method uses small values for D but it only works well for
certain values for k.

Barreto, Lynn and Scott [4] wrote n = hr
d for h > 1 and some integer d and

arranged that the RHS of the CM equation (1) becomes of the form (D′u)2 by
using adequate values for d, t and h (that can be easily found by simple search
algorithms). They have solutions for families of curves with many values of k.

The best results from [9,4] have ρ approximately 1.25. As these solutions are
produced by using small values of D, the curves can be quickly found by the
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CM method. Both methods use r = Φk(t − 1), where Φk is the k-th cyclotomic
polynomial, which restricts the number of curves that can be found.

Barreto and Naehrig [5], building on work ofGalbraith, McKee and Valença [14],
found a particular solution for a curve of prime order (which is the optimum case,
when we have h = 1 and ρ ≈ 1) with k = 12, using a proper factor of Φk(T (x)−1),
when T (x) = 6x2 + 1. Curves in the resulting family are known as “BN curves”.

Scott [18] extended the ideas of [9,4], by using R(x) as any proper factor of
Φk(T (x) − 1) (and not just R(x) = Φk(T (x) − 1)). In this method (which is
described in greater detail in Section 3 below) one first checks, for given T (x),
H(x) and d, if 4H(x)R(x) − d(T (x) − 2)2 is a perfect square. If so then one
can compute U(x) and P (x) and then construct a curve using the CM method.
Similar ideas were also used by Duan, Cui and Chan [11]; their best results is
ρ = 1.06, but only when k = 96.

The main drawback in these cases is that you have to limit the coefficient sizes
and the degree of the polynomial H(x) since it is found by an exhaustive search.
Because of that, if there are solutions for H(x) with relatively high degree or
large coefficients then those solutions will not be easily found by such methods.
Our contribution is to replace the exhaustive search by solving a system of
multivariate polynomial equations using Gröbner basis reduction.

3 Scott’s Method

In this section, we will present in detail the method proposed by Scott [18] (also
see Section 6 of [13]). The starting point is the CM equation:

t2 − 4p = Du2. (1)

We also have:
n = #E(Fp) = p + 1 − t ≡ 0 mod r (2)

pk − 1 ≡ 0 mod r (3)
Substituting (2) into (3) gives

(t − 1)k ≡ 1 mod r. (4)

Since k is the embedding degree, it follows that t − 1 is a primitive kth root of
unity modulo r, which is equivalent to r | Φk(t − 1).

Substituting p = n + t − 1 into (1), we have:

(t − 2)2 − 4n = Du2. (5)

To have the RHS of the equation (5) to be a perfect square one can multiply
equation (5) by an integer d, such that dD = (D′)2. Setting n = hr for a “small”
cofactor h and defining h′ = hd gives

d(t − 2)2 − 4h′r = (D′u)2. (6)

The problem is to find integers (d, t, h′, r) such that the LHS of equation (6)
is a perfect square. Algorithm 1 presents the method to achieve this.

Step 2 of Algorithm 1 uses an exhaustive search over possible values for the
cofactor H ′(x). In practice, this means that we have to impose limits on the



Constructing Pairing-Friendly Elliptic Curves 339

Algorithm 1. Scott’s method

System Parameters: Φk(x).
Input: embedding degree k.
Output: polynomials P (x), T (x),H(x) and R(x).
1. Given k (embedding degree), choose a polynomial T (x), such that Φk(T (x)−1)

has a suitable factorisation as R(x)R′(x);
2. Write H ′(x) = h′

0 + h′
1x + h′

2x
2 + ... + h′

nxn;
Use an exhaustive search (see below) over the variables (h′

0, h
′
1, ..., h

′
n, d) until

d(T (x) − 2)2 − 4H ′(x)R(x) is a perfect square;
3. Compute H(x) = H ′(x)/d, D ∈ Z the square-free part of d (i.e., d = Dw2 for

some w ∈ Q), P (x) = H(x)R(x)+T (x)−1 and U(x) =

√
d(T (x)−2)2−4H′(x)R(x)

D

and check if P (x) is irreducible;
5. If there exists an x0 ∈ Z such that P (x0) and R(x0) are both primes, then

return P (x), T (x),H(x) and R(x)

coefficient sizes and on the degree of H ′(x). Choose an integer B as a bound
for the size of coefficients in H ′(x) and choose a bound n on the degree of
H ′(x). Note that the degree n should be relatively small (since we do not want
the cofactor h to be large), but it is not clear that the coefficients of H(x) are
necessarily very small. The algorithm needs Bn+1 steps to find the coefficients of
H ′(x). If we allow negative coefficients for H ′(x), then we have the coefficients of
H ′ bounded between [−B, B] and therefore, (2B)n+1 steps. Typically we might
also have −B � D < 0 giving B(2B)n+1 steps. Therefore, there is a practical
limit on the polynomials H(x) which can be found by Scott’s method.

4 Our Refinement of Scott’s Method

As discussed above, if there are families of elliptic curves such that H(x) has
large coefficients and/or high degree then Scott’s method will take a long time
to find them. Our idea is to replace the exhaustive search by solving a system
of multivariate polynomial equations.

Our starting point is the equation (5), derived from the CM equation. Putting
n = hr and rearranging terms gives

(t − 2)2 − Du2 = 4hr. (7)

This can be rewritten as

(t − 2)2 − Du2 ≡ 0 mod (4r). (8)

As we seek a polynomial family, we have polynomials T (x) and R(x) and we
want to solve the equation

(T (x) − 2)2 − DU(x)2 ≡ 0 mod (4R(x)) (9)

for D and U(x). We will solve this equation by expressing the problem in terms
of solving a system of multivariate equations. We discard the trivial solution
D = 1 and U(x) = T (x) − 2.
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Precisely, write U(x) = u0+u1x+· · ·+unxn ∈ Q[x] where the ui are indetermi-
nates and where n is some guess of the degree. Also, let D be an indeterminate1.
Let m = deg(R(x)). One can compute the LHS of (9) and reduce modulo R(x) to
obtain a polynomial of degree ≤ (m−1) in the indeterminates ui and D. The con-
gruence to 0 therefore gives m non-linear equations over Q in the n+2 variables
u0, . . . , un, D. If n + 2 < m then we have a potentially overdetermined system
and one can hope to solve it using Gröbner basis techniques (see [1], [10]). Our
implementation uses MAGMA; in Appendix A we give a step-by-step example.

Once U(x) has been obtained one can then solve for H(x) by polynomial
division as

H(x) =
(T (x) − 2)2 − DU(x)2

4R(x)
.

We now explain that the condition n + 2 < m is not a serious problem when
one is trying to produce families of parameters with a good value of ρ. In practice
we usually have deg(R(x)) ≥ 2 deg(T (x)) and so, by the equation 4H(x)R(x) =
(T (x) − 2)2 − DU(x)2 it follows that deg(H(x)) + deg(R(x)) = 2 deg(U(x)). In
other words, deg(H(x))+m = 2n. Since we do not want to have large cofactors,
it follows that deg(H(x)) should be much smaller than m, and so n < m. In any
case, since we are working modulo R(x) it is unnecessary to consider deg(U(x)) ≥
deg(R(x)). Furthermore, even if n + 2 ≥ m then one can guess one or more of
the coefficients ui (an example of this is given in Appendix A).

Finally, we can compute P (x) = H(x)R(x) + T (x) − 1 and check if P (x) is
irreducible and if there is an integer x0 such that P (x0) is prime.

Algorithm 2. Our refinement of Scott’s method

System Parameters: Φk(x).
Input: embedding degree k.
Output: polynomials P (x), T (x), H(x) and R(x).
1. Given k (embedding degree), find a polynomial T (x) such that Φk(T (x) − 1)

has a suitable factorisation as R(x)R′(x); Let m = deg(R(x));
2. Write U(x) = u0 + u1x + u2x

2 + ... + unxn for suitable n;
Reduce [(T (x)−2)2−DU(x)2] mod (4R(x)) to get m multivariate polynomials
in the n + 2 variables ui and D;

3. Determine the set of solutions over Q to the system of multivariate polynomial
equations using Gröbner basis methods;

4. Compute H(x) = (T (x)−2)2−DU(x)2

4R(x) and P (x) = H(x)R(x) + T (x) − 1 and

check if P (x) is irreducible;
5. If there exists an x0 ∈ Z such that P (x0) and R(x0) are both primes, then

return P (x), T (x), H(x) and R(x)

Algorithm 2 gives a brief description of our method. In Step 1 we just choose
T (x) by a simple exhaustive search algorithm; the choice of T (x) is equally crucial
to both Scott’s method and our refinement. Note that we focused attention on
1 A further extension is to take D(x) to be a polynomial, but this quickly gives CM

discriminants which are too large.
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the case where R(x) is a “proper factor” of Φk(T (x) − 1), but our method still
works if Φk(T (x) − 1) is irreducible.

5 Discussion and Examples

In principle, Scott’s method can find every family of pairing-friendly curves.
However, in practice the search required to find the coefficients of the polynomial
H(x) could be prohibitive. Further, it is impossible to tell when using Scott’s
method whether one has found all solutions or whether there exist polynomials
whose coefficients are outside the search range.

Our refinement also finds all families, and the dependence of the running time
on the size of coefficients seems to be much less severe. Also, with our approach
one computes all families at once and so one knows that every possible family
has been found for a given choice of T (x), R(x) and degree of U(x).

Note however that the complexity of Gröbner basis methods depends badly
on the number of variables. Hence, we are restricted to using polynomials H(x)
of relatively low degree. As mentioned above, to get low values for ρ one needs
deg H(x) to be relatively small, so this is not a serious issue.

We now present some examples of curves with polynomials H(x) which are not
very quickly found by Scott’s method. This illustrates the potential advantage
of our approach over Scott’s method. We give two examples below of polynomial
families of pairing-friendly curves which, to the best of our knowledge, have
not previously appeared in the literature. In both examples the size of H(x)
is such that a relatively large computation would have been required to find it
using Scott’s method, whereas our solution takes less than a second. Note that
both examples have ρ ≥ 1.5 which means that these families are not necessarily
suitable for some applications.

We were very surprised that our efforts yielded only these two families. It
seems to be the case that almost all examples of polynomial families of pairing-
friendly curves have polynomials H(x) with coefficients of relatively low height.
We have no explanation for this fact.

Example 1: k = 14
T (x) = x + 1
D = −7
R(x) = x6 − x5 + x4 − x3 + x2 − x + 1
U(x) = 1

7 (−2x5 + 2x4 − 2x3 + 4x2 − 3x + 1)
P (x) = 1

7 (x10 − 2x9 + 3x8 − 6x7 + 8x6 − 8x5 + 8x4 − 7x3 + 6x2 + 2x + 2)
H(x) = 1

7 (x2 + x + 2)(x − 1)2 = 1
7 (x4 − x3 + x2 − 3x + 2)

ρ = 1.65

In this case, R(x) = Φ14(T (x) − 1) is irreducible. For x0 = 134222987 we find a
267-bit prime p and a 162-bit prime r. It took about 0.5 seconds for Magma to
compute the Gröbner basis for this example.
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Example 2: k = 12
T (x) = x3 + x2 + 4x + 2
D = −4
R(x) = x4 + 2x3 + 5x2 + 4x + 1
U(x) = −2x3 − 3x2 − 17

2 x − 4
P (x) = 1

4 (17x6 + 50x5 + 181x4 + 280x3 + 405x2 + 288x + 68)
H(x) = 1

4 (17x2 + 16x + 64)
ρ = 1.5

For x0 = 1099511631452 we find a 242-bit prime p and a 160-bit prime r. The
Gröbner basis computation in Magma for this example took about 0.4 seconds.
Note that the coefficients of H(x) are larger than in Example 1, so Scott’s method
would typically take longer to find this example, whereas the running time of our
method is about the same in both cases. The other advantage is that we know
we have found all solutions, whereas with Scott’s method one doesn’t know if
there is another solution just outside the search range.

6 Conclusion

In this paper we proposed a refinement to the method of constructing elliptic
curves proposed by Michael Scott, in that we avoid the exhaustive search used
to find the cofactor H(x).

We remark that both methods have the choice of T (x) as a bottleneck, since
that polynomial is found by exhaustive search. Galbraith, McKee and Valença
[14] gave examples of quadratic families of polynomials Q(x) such that Φk(Q(x))
splits, but for higher degree families it still remains an open problem to classify
such polynomials.
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So, we take R(x) = x4 + 2x3 + 5x2 + 4x + 1. One can also use the other factor
R′(x); this leads to a family with deg P (x) = 12 and deg H(x) = 4 so we have the
same value ρ but a more sparse family (since we expect a degree 12 polynomial
to represent fewer primes of a given size than a degree 4 polynomial does).

Now, we write U(x) = u3x
3 + u2x

2 + u1x + u0 and reduce [(T (x) − 2)2 −
dU(x)2] mod (4R(x)) to obtain

(−2du0u3 − 2du1u2 + 4du1u3 + 2du2
2 + 2du2u3 − 8du2

3 − 4)x3

+(−2du0u2 − du2
1 + 10du1u3 + 5du2

2 − 12du2u3 − 12du2
3 − 5)x2

+(−2du0u1 + 8du1u3 + 4du2
2 − 14du2u3 − 6du2

3 − 16)x
+(−du2

0 + 2du1u3 + du2
2 − 4du2u3 − du2

3 − 4)

We want [(T (x) − 2)2 − 4U(x)2] ≡ 0 mod (4R(x)), so we have the following
system of equations:

2du0u3 + 2du1u2 − 4du1u3 − 2du2
2 − 2du2u3 + 8du2

3 + 4 = 0
2du0u2 + du2

1 − 10du1u3 − 5du2
2 + 12du2u3 + 12du2

3 + 5 = 0
2du0u1 − 8du1u3 − 4du2

2 + 14du2u3 + 6du2
3 + 16 = 0

du2
0 − 2du1u3 − du2

2 + 4du2u3 + du2
3 + 4 = 0

Finding solutions to this system of equations is the same as finding rational
points on the affine algebraic set defined by them. Recall that if I is a set of poly-
nomials in K[x1, ..., xn] then the subset V of Kn consisting of all (a1, ..., an) ∈ Kn

such that f(a1, ..., an) = 0 for all f ∈ I is an algebraic set. If V is irreducible
then it is called a variety.

We use MAGMA to find solutions to this system (using Gröbner basis re-
duction). At this point, we have four non-linear equations and five variables
(u0, u1, u2, u3, d). We need first to fix one of the variables, so that we have a
zero-dimensional algebraic set.2 We take u0 = 1 (which incidently prevents the
trivial solution).

Magma V2.12-19 Thu Jan 25 2007 09:38:55 [Seed = 2105557683]
Type ? for help. Type <Ctrl>-D to quit.
> R<d,u1,u2,u3> := PolynomialRing(RationalField(),4);
> u0:= 1;
> I:= ideal<R|-2*d*u0*u3 - 2*d*u1*u2 + 4*d*u1*u3 + 2*d*u2^2 +
> 2*d*u2*u3 - 8*d*u3^2 - 4, - 2*d*u0*u2 - d*u1^2 + 10*d*u1*u3 +
> 5*d*u2^2 - 12*d*u2*u3 - 12*d*u3^2 - 5, - 2*d*u0*u1 +
> 8*d*u1*u3 + 4*d*u2^2 - 14*d*u2*u3 - 6*d*u3^2 - 16, - d*u0^2 +
> 2*d*u1*u3 + d*u2^2 - 4*d*u2*u3 - d*u3^2 - 4>;
> print Variety(I);
[ <-196/3, 15/7, 11/14, 1/2>, <-64, 17/8, 3/4, 1/2> ]
>
2 This does not lead to an exhaustive search, since our equations are of the form

dfi(u0, . . . , un) = ci where fi is homogeneous of degree 2 and ci is a constant. Hence,
if (d, u0, . . . , un) is a solution with u0 �= 0 then so is (du2

0, 1, u1/u0, . . . , un/u0).
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To simplify the expressions we take u0 = −4 (this reduces d to a fundamental
discriminant for the second solution), and then
Variety = [< −49/12, −60/7, −22/7, −2 >, < −4, −17/2, −3, −2 >].

Taking the point (−4, −17/2, −3, −2) gives the polynomial U(x) = −2x3 −
3x2 − 17

2 x − 4 and D = −4. We then compute

H(x) =
(T (x) − 2)2 − DU(x)2

4R(x)
=

17x2 + 16x + 64
4

and

P (x) = H(x)R(x)+T (x)−1 =
17x6 + 50x5 + 181x4 + 280x3 + 405x2 + 288x + 68

4

which is an irreducible polynomial over Q.
If x 	 240 we get 242-bit values p and 160-bit values r, giving ρ = log(p)

log(r) 	 1.5.
As mentioned above, taking x0 = 1099511631452 gives both P (x0) and R(x0)
prime as required.

Taking the other rational point leads to a family with D = −3 and P (x) =
(13x6 + 40x5 + 142x4 + 223x3 + 317x2 + 222x + 52)/3.
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Abstract. The US government has published recommended RSA key
sizes to go with AES-256 bit keys. These are huge and it is not clear what
is the best strategy to implement modular arithmetic. This paper aims
to investigate a set of possibilities from straight Montgomery and Barrett
arithmetic through to combining them with Karatsuba and Toom-Cook
style techniques.

1 Introduction

Modular Arithmetic is a fundamental component in many public-key cryptosys-
tems such as RSA, ElGamal and ECC. A common feature of most of these
schemes is that the modulus is fixed for most, if not all, calculations. This fact
can be cleverly exploited to reduce the cost of the modular arithmetic opera-
tions and, in fact, there are two widely used methods which do so, namely the
Montgomery and Barrett reduction algorithms.

Precomputed values related to the fixed modulus are used in the Montgomery
and Barrett methods in order to reduce the cost of the modular reduction. In fact,
the main effort in these methods is spent in evaluating two half-multiplications
as opposed to an expensive long division. Given that the sizes of the moduli
used in current systems are small or moderate, these multiplications are usually
computed using the classical schoolbook multiplication and there has never been
a need for using asymptotically faster multiplication methods.

However, NIST has recently recommended using moduli sizes as big as 15360
bits to match the security level of AES-256 [13, p. 63]. With this in mind, it now
becomes worthwhile to explore the improvements that can be made by using
asymptotically faster multiplication methods in combination with any “tricks”
that may render them practical even for moderate sizes. We will, in fact, see
that an error correction technique called wooping [3] allows us to overcome the
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difficulties that arise when trying to go beyond the obvious simple substitution
of multiplication methods. These difficulties are due to carry-propagation when
computing upper-half products with recursive methods, a problem that does
not arise when using traditional combinations such as the Karatsuba-Comba-
Montgomery (KCM) method [7,17].

Using a formal computational cost model, we estimate the exact cost of the
Montgomery and Barrett modular reduction algorithms. We then introduce some
variants using the Karatsuba and Toom-3 multiplication methods, and analyse
the savings that can be theoretically achieved. These variants have been imple-
mented in C using the GMP library (GNU Multiple Precision arithmetic library)
[5], and the relevant results are reported here and compared with the theoretical
estimates.

The authors would like to thank Pooya Farshim and Dan Page for their in-
sightful discussions and suggestions, and also the anonymous reviewers whose
comments have helped improve the quality of this paper greatly.

1.1 Notation and Assumptions

We assume that we have a machine that can do arithmetic operations on word
sized operands, which we will refer to as base operations, and that it has access
to an unlimited random access memory. The first assumption is true for most
modern machines whereas, strictly speaking, the second is not true as memory
is always limited in practice and there is some cost associated with fetching or
moving data – a cost that depends on the size and location of the data and also
on the speed and size of the RAM and Cache. If enough care is taken then a good
implementation should be able to bring this extra cost to a minimum. Also, in
order to simplify the task of analysing algorithms, we will limit ourselves to the
study of sequential machines and do not consider any aspect of parallelism.

We represent large integers as arrays of machine words, with the basic arith-
metic operations done with the usual classical schoolbook methods, unless oth-
erwise mentioned. A cost expression of the form xM + yA denotes the cost
of performing x base multiplications and y base additions. In order to make
comparison feasible, we introduce a parameter μ such that 1M = μA. This
parameter depends on the machine’s architecture and implementation details.
To keep our notation light, we will omit the unit A in formulae of the form
aM + bA = (aμ + b)A and would simply write aμ + b.

Let us now estimate the cost of schoolbook addition and multiplication in
our model. We have A(n) = n for the cost of adding two n-word integers, and
M(n) = n2M + 2n(n − 1)A for the cost of multiplying two n-word integers.

A(n) = n and M(n) = (μ + 2)n2 − 2n. (1)

We let Mu(n) and M�(n) denote the cost of computing the upper and lower
halves of the product of two n-word integers, respectively. The cost of computing
the lower half product is M�(n) = 1

2n(n + 1)M + n(n − 1)A, which leads to

M�(n) = (
μ

2
+ 1)n2 + (

μ

2
− 1)n. (2)
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In principal, we have Mu(n) = M�(n) but there is a small extra cost due to the
fact that we need to keep track of carries from the lower half of the product, a
fact which will be crucial in the sequel.

We also set R to be the least power of the basis that is greater than n-words
i.e. if a word holds β bits then the basis is

b = 2β and R = (2β)n = 2βn.

Then, the subscripts � and u respectively denote the lower and upper part of a
number in the sense that

x� = x mod R and xu = �x/R� .

We will assume that the word size is β = 32 bits, which is the standard word-
size in most desktop computers. So, for a 15360-bit integer we will need n = 480
words. If the word size is 64 bits then n drops to 240.

2 The Karatsuba and Toom-Cook Multiplication
Algorithms

The next two subsections will review the Karatsuba and Toom-Cook fast integer
multiplication algorithms and analyse their cost according to the cost model pre-
sented in the introduction. A more comprehensive treatment of these and other
methods can be found in [9, p. 294–311]. We will also consider the computation
of upper and lower halves of products as these will save us on the overall cost,
[8].

Recall that, according to our computational cost model, we will not take the
cost of memory operations into account and we will assume that they are for
free.

2.1 Karatsuba Integer Multiplication

This is a popular divide-and-conquer algorithm for faster multiplication intro-
duced by Karatsuba and published by Ofman [14]. It achieves an asymptotic
complexity of O(nlg 3) = O(n1.585), as opposed to O(n2) for the schoolbook
method.

Let u, v ∈ N be represented as n-word integers in base b = 2β, where n = 2t.
Write u = u1b

t + u0 and v = v1b
t + v0, where u0, u1, v0, v1 are t-word integers.

Then
uv = w2b

2t + w1b
t + w0,

where
w2 = u1v1

w1 = (u0 + u1)(v0 + v1) − w0 − w2

w0 = u0v0
w0

w1

w2

0t2t3t4t
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In practice, computing u0 + u1 and v0 + v1 may result in an overflow, so
extra care has to be taken when computing these values. Alternatively, we can
compute

w1 = w0 + w2 − (u0 − u1)(v0 − v1),

which uses subtraction instead of addition.
If we use the Karatsuba method recursively to multiply operands greater than

or equal to a fixed threshold value T and switch to schoolbook multiplication
thereafter then the cost function is

K(n) =
{

3K(n/2) + 4n for n ≥ T
M(n) for n < T

(3)

The method of solving such recurrence equations is outlined in Appendix A,
and applying it to this equation we get (for n ≥ T )

K(n) = [(μ + 2)
T

2{lg(T/n)} + 6]
(

3
4

){lg(T/n)}
T

︸ ︷︷ ︸
Bounded by a constant (μ, T are fixed)

·
( n

T

)lg 3
− 8n = O(nlg 3).

The case where n is odd can be dealt with by letting t = �n/2�, but it is more
efficient to set t = �n/2� allowing u1, v1 to be (t+1)-word integers while keeping
u0, v0 as t-word integers and treating the extra bits explicitly. In this case, we
have

K(n) = 2K((n + 1)/2) + K((n − 1)/2) + 4n, for odd n.

With this optimisation, it becomes very difficult to write a closed form for
the solution, if it is possible at all. So, we will be satisfied with a sample plot.
The graph in Figure 1 shows the ratio M(n)/K(n) and illustrates the savings
that can be made by using the Karatsuba multiplication method instead of the
schoolbook method.

2.2 Toom-Cook Multiplication

This method also uses a divide-and-conquer strategy and can be considered as
a generalisation of the Karatsuba method. The general framework here is to
exploit polynomial arithmetic. We first write the two integers u, v that we want
to multiply as degree r polynomials u(x), v(x) whose coefficients are the base
b digits of u and v. We then evaluate the polynomials at as many points as
needed to uniquely define their product w(x) = u(x)v(x) through interpolation:
2r + 1 points. Now, multiplying the values of the two polynomials u(x), v(x) at
the chosen points, we get the values of the product w(x) at the same points.
Given these 2r + 1 values, we can now recover w(x) by interpolation; and to
get the product of the original integers we simply evaluate w(x) at the base
b (release the carries). This yields a multiplication method having complexity
O(nlog(2r+1)/ log(r+1)). Note that the Karatsuba method can viewed as a special
case of this framework when r = 1 (linear polynomials).
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We will describe the popular instance known as Toom-3 multiplication. Toom-
3 achieves a complexity O(nlog3 5) = O(n1.465) by taking the polynomials u(x)
and v(x) to be quadratic. Suppose we want to multiply two n-word integers u
and v, where n = 3t. First, represent them as polynomials:

u = u(x)|x=bt = u0 + u1b
t + u2b

2t,
v = v(x)|x=bt = v0 + v1b

t + v2b
2t.

Now, to evaluate w = uv, we first evaluate w(x) = u(x)v(x) at x = 0, 1, −1, 2, ∞.
Then, knowing the values of w(x) = w4x

4+w3x
3+w2x

2+w1x+w0 at five points,

we interpolate the coefficients of w. We have

w4 = u2v2

w3 = u2v1 + u1v2

w2 = u2v0 + u1v1 + u0v2

w1 = u0v1 + u1v0

w0 = u0v0

w0

w1

w2

w3

w4

0t2t3t4t5t6t

w(x)|x=0 = u0v0 = w0
w(x)|x=+1 = (u2 + u1 + u0)(v2 + v1 + v0) =: α
w(x)|x=−1 = (u2 − u1 + u0)(v2 − v1 + v0) =: β
w(x)|x=2 = (4u2 + 2u1 + u0)(4v2 + 2v1 + v0) =: γ

w(x)|x=∞
def= limx→∞ u(x)v(x)/x4 = u2v2 = w4

So we get w0 and w4 right away, and what remains is to find w1, w2, w3.
Solving the previous system of equations we get

w2 = (α + β)/2 − w4 − w0

w3 = +w0/2 − 2w4 + (γ − β)/6 − α/2
w1 = −w0/2 + 2w4 − (γ + 2β)/6 + α

Hence, the cost function for Toom-3 is T (n) = 5T (n/3) + [3A(t) + 4A(t) +
3A(t)] + 4A(t), i.e.

T (n) = 5T (n/3) + 14n/3. (4)

When n is not a multiple of 3, we set t = �n/3� and allow u2 and v2 to
be shorter than t words. This makes implementation easier, as was done in the
GMP library.
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We introduce a second threshold value T ′ > T such that if n < T then we use
schoolbook multiplication, if T ≤ n < T ′ then we use Karatsuba multiplication,
and if n > T ′ then we use Toom-3 multiplication.

Figure 1 shows the plots of the ratios M(n)/K(n) and M(n)/T (n) for μ = 1.2,
T = 23 and T ′ = 133, hence showing the expected speedup that can be made
over the schoolbook multiplication method for these particular parameter values.
These specific values seem to be generic and will be used throughout this paper
for the purpose of illustration.

100 200 300 400 500

2

3

4

5

M�n��K�n�

M�n��T�n�

Fig. 1. Plots for M(n)/K(n) and M(n)/T (n)

The threshold values T = 23 and T ′ = 133 are those of the Pentium-4 ma-
chines that were used for testing (2.80GHz, 512KB cache, model 2), as estimated
by GMP’s tuning program, and can easily be estimated for other architectures.

Note, however, that the exact value of μ is hard to pin down because execu-
tion times depend on the ordering of instructions and data, which may lead to
significant savings through pipelining. Luckily, it turns out that small variations
in μ have little theoretical impact on the cost ratios considered here, as μ essen-
tially only affects the leading coefficient which varies slowly as a function of μ.
The value 1.2 for μ was experimentally chosen from a set of possible values in
the range (1, 1.5), which were obtained using loops to measure the average times
for word operations on a few different computers and then fitting the collected
data to estimate the value of μ for each architecture. Values for μ can also be
estimated theoretically through the tables presented in [6].

2.3 Short Products

We will make use of methods for computing the lower and upper half products
(short products), so we will study their costs next. We start with a general
method that applies to all multiplication algorithms [12,8] then present some
specific solutions suited to the Karatsuba method.

A General Method. First, we will introduce a visual aid that will make ex-
plaining this method easier and more intuitive. When multiplying two numbers
using schoolbook multiplication we stack the partial products in a shape similar
to the one on the left in Figure 2 prior to adding them up; and to find the lower
half product, for example, we only need to compute the results in the shaded
triangle.
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Fig. 2. Calculation of short products

Let S(n) be the cost of computing a short product of two n-word integers. If
we take a portion ρn, where 0.5 ≤ ρ < 1, of both operands and compute their
full product, corresponding to the darker shade on the right in Figure 2, and
then compute the remaining terms using short products again, corresponding to
the two lighter shaded triangles, then we find that this method would cost

S(n) = M(ρn) + 2S((1 − ρ)n).

Since the multiplication methods we are considering all cost M(n) = nα, for
some α ∈ (1, 2], we find that

S(n) ≤ ρα

1 − 2(1 − ρ)α
M(n) =: Cρ M(n).

The factor Cρ is minimal at ρ̂ = 1−2−1/(α−1), and the following table summarises
the results for the methods that we are interested in. It should be noted that
these are the best asymptotically and thus there may be better choices for ρ
when n is small or moderate.

Method α ρ̂ Cρ̂

Schoolbook 2 0.5 0.5
Karatsuba lg 3 0.694 0.808
Toom-3 log3 5 0.775 0.888

Note that if we fix n and look for the best value of ρ̂ we may get a slightly
different value. For the case where n = 480, this value turns out to be about
0.80 for Karatsuba and 0.88 for Toom-3.

The next Karatsuba-specific methods are actually special cases of this general
setup with ρ = 0.5. They are easier to implement and may be faster in practice.
Note, however, that doing the same for Toom-3 produces a slower method and
hence it has not been considered.

Lower Half Products Using the Karatsuba Method. For this we need to
compute

(w0 + w1b
t + w2b

2t) mod bn = (u0v0 + [(u0v1 + u1v0) mod bt]bt) mod bn,

which costs K�(n) = K(t) + 2K�(t) + 2A(t), i.e.

K�(n) = K(n/2) + 2K�(n/2) + n. (5)
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Upper Half Products Using the Karatsuba Method. This time, we have
to compute

⌊
w2b

2t + w1b
t + w0

b2t

⌋
= carry + u1v1 +

⌊
u0v1 + u1v0

bt

⌋
.

The carry results from adding u0v0 to (u0v1 +u1v0)bt, in the full multiplication,
and hence is either 0 or 1.

If we ignore the carry and use the “faulty” recursive method suggested by this
formula then the maximum error ε(n) will satisfy the recurrence equation

ε(n) = 2ε(n/2) + 1 and ε(n) = 0 for n < T .

By the result in Appendix A, we deduce that ε(n) = 2�lg(n/T )� − 1 ≤ 2n/T − 1.
So, computing upper-half products, up-to an error of order O(n), can be done
at the cost of Ku(n) = K(t) + 2Ku(t) + 2A(t), i.e.

Ku(n) = K(n/2) + 2Ku(n/2) + n = K�(n). (6)

It turns out that, when the faulty result of this method is used in the reduction
algorithms, we can correct the computation by using a nice technique, known as
wooping, which is due to Bos [3, p. 281–284]. The next subsection will introduce
this technique while the correction steps are detailed in section 3.1.

To see how much faster these methods are, we plot M�(n)/K�(n) (using both
the general and the specific method) and M�(n)/T�(n) – see Figure 3. The same
speed-ups apply to the upper-half product methods too as they essentially have
the same cost.
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Fig. 3. Plots for K(n)/K�(n) and T (n)/T�(n)

2.4 Wooping

The wooping technique allows us to verify the outcome of a set of integer opera-
tions. The idea is to perform the same operations modulo a small prime number
and then compare the results. More specifically, we reduce the operands modulo
the prime number first then operate on them with the corresponding “small”
modular operations. For example, if the operation is z ← x ·y then we randomly
choose a small prime p and compute x̃ ← x mod p and ỹ ← y mod p first, then
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we compute z̃ ← x̃ · ỹ mod p; and for the comparison we reduce z modulo p and
compare the result with z̃. If the compared small results do not agree then there
certainly is an error in the full integer computation, but if they agree then there
is a low chance that an error has occurred.

If p is a randomly chosen prime number then the probability that it will fail to
reveal the error is 1/p, so one can choose other prime numbers for the wooping
test to increase confidence.

Note, however, that the manner in which we use this technique is slightly
different because we already know that there is an error in our computation
and we just want to correct it. Furthermore, since we are not in an adversarial
setup, this correction scheme is deterministic and always successful. What we
do is choose a woop modulus that is bigger than the largest possible error, and
then correct the integer computation by adding the difference between the two
reduced values.

As a toy example of how to use the wooping technique for correction, let us
consider a device that can multiply integers but sometimes introduces an error of
+1 in the result. Suppose that we wanted to compute 4× 5 but we got 21 as the
answer. First, note that we can choose the woop modulus to be 2 as that is enough
to reveal the error. Now, now we check that (4 mod 2) × (5 mod 2) = 0 × 1 = 0
whereas 21 mod 2 = 1, so we correct the computation by subtracting 1 from 21
to get the correct answer of 20. For the exact details of how to use this technique
in our work, see section 3.1.

On a side note, as an alternative to wooping one may consider computing
enough extra words to the right of the truncated upper-product in order to
ensure a small probability of a carry being missed. This is in fact suggested
in [8] and the extra words are referred to as “guard digits.” This alternative is
more complicated to implement because of the extra storage and will most likely
be more expensive, especially if two or more guard digits are needed. Wooping
on the other hand requires negligible storage and computational overhead.

3 The Montgomery and Barrett Reductions

Given a fixed n-word modulus m, we want to reduce 2n-word integers modulo
m as fast as possible. We will now describe two practical algorithms used for
this purpose, namely the Montgomery and Barrett reduction methods.

3.1 Montgomery Reduction

The Montgomery reduction algorithm is described in Algorithm 1. We note that
the practical version used with schoolbook multiplication does not require direct
calculation of lower or upper half products, but the quoted cost remains the
same.

We can see that the cost of Algorithm 1 is M�(n) + Mu(n) + 2A(n). So, its
cost using schoolbook multiplication is (using M� = Mu)

Cmr,cl(n) = (μ + 2)n2 + μn. (7)
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Algorithm 1. Montgomery reduction
Input: n-word integer m, −m−1 mod R where R = bn, and z < mR.
Output: zR−1 mod m.
1: u ← (−m−1)z mod R 〈M�(n)〉
2: x ← (z + um)/R 〈Mu(n) + A(n)〉
3: if x ≥ m then
4: x ← x − m. 〈A(n)〉
5: end if
6: Return x

The Karatsuba Variant with Wooping. Recall, from section 2.1, that we
can compute upper-half products using Karatsuba multiplication with an error
of O(n). We will now explain how to use the wooping correction idea in our case.
Let λ ∈ N be a modulus greater than the magnitude of the maximum possible
error resulting from ignoring the carry in the “faulty” upper-half Karatsuba
method.

We first compute the product u ← (−m−1)z mod R with a low-half Karatsuba
multiplication. Now, for x ← (z + um)/R, note that a good approximation to
this value is given by xu +(um)u, which will be off by at most 1 (carry). An extra
error will come from the fact that we are using a faulty Karatsuba multiplication
for the upper-half product. To correct the approximate answer, we now compute
(z + um)/R modulo λ and compare it with the reduction of the approximate
value: Given that the error magnitude is less than λ then we will be able to
deduce the offset from the correct answer by comparing these reduced values,
and therefore correct our answer. This is the “trick” that allows us to be satisfied
with an approximation to (um)u and save on its computation.

If we further choose λ = bl − 1, for some l ∈ N, then reduction modulo λ
becomes rather efficient. In fact, to reduce an n-word number modulo bl − 1, we
only need �n/l� additions on numbers of size l words, costing a total of nA. In
practice, for b = 232, we take l = 1 as this is enough to correct errors for n < b.
Also, note that with this choice of λ and R = bn we have R ≡ 1 (mod λ), so the
computation of (z + um)/R mod λ requires no inversion.

With this choice of λ = b − 1 and R = bn, the correction steps involve
computing z + um mod λ, costing about (2n + n + n)A + 1M + 2A, and x mod
λ, costing about nA, where x is the result of step 2 of the algorithm. Then,
computing the offset and correction will cost 2A. So the cost of the Karatsuba
variant of Montgomery reduction is about

Cmr,2(n) = K�(n) + Ku(n) + 7n + μ + 4. (8)

The Toom-3 Variant (with Wooping). We proceed exactly the same as in
the Karatsuba variant, and the cost is then found to be

Cmr,3(n) = T�(n) + Tu(n) + 7n + μ + 4. (9)
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Comparison. Figure 4 shows the graphs of Cmr,cl/Cmr,2 and Cmr,cl/Cmr,3, and
serves to illustrate the improvements that can be made with these two variants
of Montgomery reduction.
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Fig. 4. Plots for Cmr,cl/Cmr,2 and Cmr,cl/Cmr,3

Crossing Point. From the graph we see that the crossing point is at about 40
words, so we should expect that the Karatsuba variant of Montgomery reduction
will start to be effective from moduli sizes of about 1280 bits.

3.2 Montgomery Multiplication

Montgomery multiplication aims to achieve fast multiplication and reduction in
one go. There exists an efficient interleaved version where multiplications and
division by R are interleaved and performed word-by-word. This approach keeps
the memory costs minimal and makes implementation easier. There does not
seem to be an easy way in which this can be done with the faster multiplication
methods. We do however consider using an iterative version of Karatsuba in
section 4.1. The interleaved version is described in Algorithm 2.

Let M1(n) denote the cost multiplying an n-word integer by a single word
integer. Then

M1(n) = nM + (n − 1)A = (μ + 1)n − 1.

So, the cost of the interleaved Montgomery multiplication is n[2M+1A+2(nM+
(n − 1)A)] + A(n).

Cmm,cl(n) = 2(μ + 1)n2 + 2μn. (10)

The Karatsuba Variant (with Wooping). To compute the Montgomery
multiplication of X and Y : XY R−1 mod m, we first multiply X by Y using
the Karatsuba method then we Montgomery-reduce the result as described in
subsection 3.1. This will then cost

Cmm,2(n) = K(n) + Cmr,2(n). (11)
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Algorithm 2. Montgomery multiplication
Input: X = xR mod m and Y = ym mod R as n-word integers, R = bn, m′ =
−m−1 mod b.
Output: XY R−1 mod m.
1: z ← 0
2: for i = 0, . . . , n − 1 do
3: u ← (z0 + xiy0)m

′ mod b 〈2M + 1A〉
4: z ← (z + xiy + um)/b 〈2M1(n) + 2A(n)〉
5: end for
6: if z ≥ m then
7: z ← z − m 〈A(n)〉
8: end if
9: Return z

The Toom-3 Variant. Here we also proceed exactly the same as in the Karat-
suba variant. The cost this time is found to be

Cmm,3(n) = T (n) + Cmr,3(n). (12)

Comparison. Figure 5 shows the plots of Cmm,cl/Cmm,2 and Cmm,cl/Cmm,3,
which illustrate the gain that is theoretically achievable with these variant of
Montgomery multiplication.
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Cmm,cl�n��Cmm,3�n�

Cmm,cl�n��Cmm,2�n�

Fig. 5. Plots for Cmm,cl/Cmm,2 and Cmm,cl/Cmm,3

Crossing Point. From the previous graph we find that the crossing point is
at about 90 words, implying that 2880 bits is the point from which our variant
starts to be advantageous.

3.3 Barrett Reduction

Let z be a 2n-word integer and m be a fixed n-word modulus. Recall that we
can reduce z modulo m using Euclidean division of z by m: z = qm+(z mod m).



358 K. Bentahar and N.P. Smart

Barrett’s idea is to avoid division by computing a good estimate for the quotient
q = �z/m� as follows

q =
⌊

zubn + z�

m

⌋
≈ bnzu

m
=

b2n

m
· zu

bn
≈

⌊μzu

bn

⌋
=: q̃ where μ =

⌊
b2n

m

⌋
.

Note that q̃ ← �(μzu)/bn� = (μzu)u, and so it can be computed as an upper-
half product (using wooping to correct the small error that results from ignoring
carry-propagation from the lower half).

It can be shown that if z < m2 then q − 2 ≤ q̃ ≤ q. So a good estimate for
the remainder is z − q̃m which we can correct by subtracting m from it at most
twice. Algorithm 3 describes this method in detail, [11, p. 604].

Algorithm 3. Barrett reduction
Input: n-word modulus m, μ =

⌊
b2n/m

⌋
and z < m2.

Output: z mod m.
1: z′ ←

⌊
z/bn−1⌋ , q̃ ←

⌊
z′μ/bn+1⌋ 〈≈ Mu(n)〉

2: r ← (z mod bn+1) − (q̃m mod bn+1) 〈≈ M�(n) + A(n)〉
3: if r < 0 then
4: r ← r + bn+1 〈A(n)〉
5: end if
6: while r ≥ m do
7: r ← r − m 〈≤ 2A(n)〉
8: end while
9: Return r

From this description, we see that the approximate cost of the Barrett reduc-
tion method is Mu(n)+M�(n)+4A(n). So if schoolbook multiplication is used
then this reduction method will cost

Cbr,cl(n) = (μ + 2)n2 + (μ + 2)n = (μ + 2)n(n + 1). (13)

If Karatsuba multiplication is used then the reduction will cost

Cbr,2(n) = K�(n) + Ku(n) + 4n (14)

and similarly for Toom-3 we get

Cbr,3(n) = T�(n) + Tu(n) + 4n. (15)

Comparison. Figure 6 represents Cbr,cl/Cbr,2 and Cbr,cl/Cbr,3, and we can see
from it that the cutoff point is at around 40-50 words.

By comparing (14) with (8) we come to the interesting conclusion that
Cbr,2(n) < Cmr,2(n) which means that the theory expects the Barrett reduction
with wooping to be slightly faster than Montgomery reduction with wooping –
as opposed to the schoolbook versions where the opposite is the case. The same
remark holds for the Toom-3 variants too.
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Fig. 6. Plots for Cbr,cl/Cbr,2 and Cbr,cl/Cbr,3

4 Further Potential Improvements

4.1 Cache Oblivious Version

If the cache size is too small then the recursive nature of the used multiplication
methods and the large sizes of the operands may cause cache misses and hence
slow the computation considerably.

One possible way of circumventing this problem is to use an iterative version
of the multiplication algorithms. For a description of an iterative version of the
Karatsuba method see [10].

4.2 FFT-Transform Based Multiplication

FFT multiplication methods are asymptotically faster than the other methods
described in this paper but the cutoff point after which it becomes faster in
practice is very high. It is argued in [2] that the Schönhage method becomes as
efficient as the Karatsuba and Toom-3 methods at about 217 = 131, 072 bits,
which is close to the value of the generic FFT multiplication threshold used in
the GMP library namely 30 times Toom-3’s threshold 30 × 128 = 3840 words
(122,880 bits). These sizes are too high for our purpose. The reader may be
interested in having a look at [18] to a see a report on concrete implementation
of a wide range of multiplication methods (but run on an old machine).

The authors of [15] suggest using cyclic convolutions instead of half products
and achieve, in [16], a complexity of Θ(2.5n logn) for a reduction algorithm with
the use of negacyclic convolutions.

5 Experimental Results

We implemented Montgomery Multiplication in three flavours: The classical in-
terleaved version, the new Karatsuba and Toom-3 with wooping variants and,
finally, a naive version where we first multiply using the fastest available mul-
tiplication method then Montgomery-reduce the resulting product using the ef-
ficient word-level version of Algorithm 1 (GMP’s redc function). These were
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Fig. 7. Montgomery Multiplication times in milliseconds

implemented in C using the GMP library [5] with the low-level mpn set of func-
tions for speed (as they are SSE2-optimized). We also implemented the RSA
exponentiation by adapting GMP’s mpz powm function which uses the efficient
sliding window method for exponentiation [4,1].1

The times needed to perform each of these two computations were averaged
for operand sizes from 64 words (2,048 bits) up to 576 words (18,432 bits), with
a step size of 32 words, and then plotted to ease comparison of the different
methods. Figure 7 shows the times for Montgomery Multiplication and Figure 8
summarises the times obtained for RSA exponentiation (Times are given in
milliseconds).

The experiments were done on Intel Pentium 4 machines (2.80GHz, 512KB
cache, model 2). The threshold values that were used are (T, T ′) = (23, 133) as
estimated by GMP’s tuning program tuneup. We bring the reader’s attention
to the fact that GMP uses slightly different threshold values for squaring, for
which a more optimised code is used. (For our machines, they are 57 and 131
respectively but there is a large margin of error in them). Note also that, in our
implementation of the short products algorithms, we used halves of T and T ′

for the thresholds.
1 A careful analysis of the sliding window method for bit-size η done by H. Cohen in

[1] shows that there exists ρ > 1 such that this method requires η− 1
2 (k2+k+2)/(k+

1) + O(ρ−η) squarings and η/(k + 1) − 1
2k(k + 3)/(k + 1)2 + O(ρ−η) multiplications.

We note that GMP optimises the window size k depending on the exponent’s bit-size
η by finding the least k such that 2η > 2k(k2 + 3k + 2) = 2k(k + 1)(k + 2). The
following table shows when a window of size k is first used for n < 1000 (η = 32n).

k 3 4 5 6 7 8 9 10

n 1 3 8 22 57 145 361 881
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We get, in particular, that an execution of a 15,360-bit RSA exponentiation
on these Pentium 4 machines takes 16.1 seconds with the Karatsuba variant and
15.6s with the Toom-3 variant on average, compared to about 23.3s with the naive
version and 36.45s for the traditional interleaved Montgomery multiplication.

Finally, we note that although the experimental cutoff points do not fit very
accurately with the theory, because of the parallelism present in modern proces-
sors (pipelining), these are not far from the expected theoretical values, and the
general trends are indeed as expected.
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A Recurrence Equations of the Form
R(n) = aR(n/b) + cn + d

We are interested in solving the recurrence equation R(n) = aR(n/b) + cn + d
subject to the threshold condition

R(n) = f(n) for n < T = bτ ,

where T is a fixed threshold value and f is a given function. We distinguish two
case according to whether a and b are equal or not.

– Let us examine the case where a 
= b first. Set k = logb n, then by induction
we get

R(bk) = a�R(bk−�) +
(a/b)� − 1
a/b − 1

· cbk +
a� − 1
a − 1

d for any � ∈ N.
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We want � to be the least number such that bk−� is just below the threshold
T i.e. bk−� < bτ ≤ bk−(�−1), so we set

� = �k − τ� = �logb(n/T )� =: �b(n/T ). (16)

We then get that (Using �x� = x + {−x})

k − � = k − �k − τ� = τ − {τ − k},

where {x} denotes the fractional part of x.
So, for n ≥ T and a 
= b, we have the following solution

R(n) = a�b(n/T )f

(
T

b{logb(T/n)}

)
+

(a/b)�b(n/T ) − 1
a/b − 1

·cn+
b�b(n/T ) − 1

b − 1
d. (17)

– If a = b then induction yields

R(bk) = b�R(bk−�) + �cbk +
b� − 1
b − 1

d for any � ∈ N.

With the same choice of � as before, we get for n ≥ T and a = b

R(n) = b�b(n/T )f

(
T

b{logb(T/n)}

)
+ cn�b(n/T ) +

b�b(n/T ) − 1
b − 1

d. (18)
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Abstract. Demand in the consumer market for graphics hardware that
accelerates rendering of 3D images has resulted in commodity devices ca-
pable of astonishing levels of performance. These results were achieved by
specifically tailoring the hardware for the target domain. As graphics ac-
celerators become increasingly programmable however, this performance
has made them an attractive target for other domains. Specifically, they
have motivated the transformation of costly algorithms from a general
purpose computational model into a form that executes on said graphics
hardware. We investigate the implementation and performance of mod-
ular exponentiation using a graphics accelerator, with the view of using
it to execute operations required in the RSA public key cryptosystem.

1 Introduction

Efficient arithmetic operations modulo a large prime (or composite) number
are core to the performance of public key cryptosystems. RSA [22] is based
on arithmetic in the ring ZN , where N = pq for large prime p and q, while
Elliptic Curve Cryptography (ECC) [11] can be parameterised over the finite
field Fp for large prime p. With a general modulus m taking the value N or
p respectively, on processors with a w-bit word size, one commonly represents
0 ≤ x < m using a vector of n = �m/2w� radix-2w digits. Unless specialist co-
processor hardware is used, modular operations on such numbers are performed
in software using well known techniques [15,2] that operate using native integer
machine operations. Given the significant computational load, it is desirable to
accelerate said operations using instruction sets that harness Single Instruction
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Multiple Data (SIMD) parallelism; in the context of ECC, a good overview is
given by Hankerson et al. [11, Chapter 5]. Although dedicated vector processors
have been proposed for cryptography [9] these are not commodity items.

In an alternative approach, researchers have investigated cryptosystems based
on arithmetic in fields modulo a small prime m or extension thereof. Since ideally
we have m < 2w, the representation of 0 ≤ x < m is simply one word; low-weight
primes [7] offer an efficient method for modular reduction. Examples that use
such arithmetic include Optimal Extension Fields (OEF) [1] which can provide
an efficient underpinning for ECC; torus based constructions such as T30 [8]; and
the use of Residue Number Systems (RNS) [16, Chapter 3] to implement RSA.
Issues of security aside, the use of such systems is attractive as operations modulo
m may be more efficiently realised by integer based machine operations. This
fact is reinforced by the aforementioned potential for parallelism; for example,
addition operations in an OEF can be computed in a component-wise manner
which directly maps onto SIMD instruction sets [11, Chapter 5].

However, the focus on use of integer operations in implementation of opera-
tions modulo large and small numbers ignores the capability for efficient floating
point computation within commodity desktop class processors. This feature is
often ignored and the related resources are left idle: from the perspective of ef-
ficiency we would like to utilise the potential for floating point arithmetic to
accelerate our implementations. Examples of this approach are provided in work
by Bernstein which outline high-performance floating point based implementa-
tions of primitives such as Poly1305 [3] and Curve25519 [4]. Beyond algorithmic
optimisation, use of floating point hardware in general purpose processors such
as the Intel Pentium 4 offered Bernstein some significant advantages. Specifi-
cally, floating point operations can often be executed in parallel with integer op-
erations; there is often a larger and more orthogonally accessible floating point
register file available; good scheduling of floating point operations can often yield
a throughput close to one operation per-cycle.

Further motivation for use of this type of approach is provided by the recent
availability of programmable, highly SIMD-parallel floating point co-processors
in the form of Graphics Processing Units (GPU). Driven by market forces these
devices have developed at a rate that has outpaced Moore’s Law: for example,
the Nvidia 7800-GTX uses 300 million transistors to deliver roughly 185 Gflop/s
in contrast with the 55 million transistor Intel Pentium 4 which delivers roughly
7 Gflop/s. Although general purpose use of the GPU is an emerging research
area [10], until recently the only published prior usage for cryptography was by
Cook et al. [5] who implemented block and stream ciphers using the OpenGL
command-set; we are aware of no previous work accelerating computationally
expensive public key primitives. Further, quoted performance results in previous
work are somewhat underwhelming, with the GPU executing AES at only 75%
the speed of a general purpose processor. This was recently improved, using
modern GPU hardware, by Harrison and Waldron [12] who also highlight the
problems of overhead in communication with the card and miss reporting of host
processor utilisation while performing GPU computation.
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This paper seeks to gather together all three strands of work described above.
Our overall aim is arithmetic modulo a large number so we can execute opera-
tions required in the RSA public key cryptosystem; we implement this arithmetic
with an RNS based approach which performs arithmetic modulo small floating
point values. The end result is an implementation which firstly fits the GPU
programming model, and secondly makes effective use of SIMD-parallel floating
point operations on which GPU performance relies. We demonstrate that with
some caveats, this implementation makes it possible to improve performance us-
ing the GPU versus that achieved using a general purpose processor (or CPU).
An alternative approach is recent work implementing a similar primitive on
the IBM Cell [6], another media-biased vector processor. However, the radically
different special purpose architecture of the GPU makes the task much more
difficult than on the general purpose IBM Cell, hence our differing approach.

We organise the paper as follows. In Section 2 we give an overview of GPU
architecture and capabilities. We use Section 3 to describe the algorithms used
to implement modular exponentiation in RNS before describing the GPU im-
plementation in Section 4. The experimental results in Section 4.3 compare the
GPU implementation with one on a standard CPU, with conclusions in Section 5.

2 An Overview of GPU Architecture

Original graphics accelerator cards were special purpose hardware accelerators
for the OpenGL and DirectX Application Programming Interfaces (APIs). Pro-
grams used the API to describe a 3D scene using polygons. The polygons have
surfaces filled with a 2D pattern called a texture. The API produced an image
for display to the user. Images are arrays of Picture Elements, or pixels, formed
by the perspective-correct projection of the primitives onto a 2D plane. Each
pixel describes the colour and intensity of a point on the display.

Graphics cards developed to allow the fixed functionality to be reprogrammed.
Vector shaders are programs that transform 3D vectors within the graphics
pipeline by custom projections and calculations. Pixel shaders allow the value
of pixels to be specified by the programmer, as part of this specification a set
of textures can be indexed by the program. Results can be directed into tex-
tures held in memory rather than to the display. We ignore 3D functionality and
render a single scaled 2D rectangle parallel to the display plane, enforcing a 1:1
relation between input and output pixels, thereby turning the GPU into a vector
processor. Each pixel is a 4-vector of single-precision floating-point values.

In the GPU programming model a single pixel shader is executed over a 2D
rectangle of pixels. Each output pixel is computed by a separate instance of the
shader, with no communication between program instances. Control-flow pro-
ceeds in lockstep between the instances to implement a SIMD vector processor.
The program instance can use its 2D position within the array to parameterise
computations, furthermore we can provide uniform variables which are constant
over a single rendering step; each program instance has read-only access to such
variables which are used to communicate parameters from the host to the shader
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Fig. 1. Rasterisation of a graphics primitive into pixels

programs. The output of a value parametrised only by the coordinates of the
pixel characterises the GPU programming model as stream-processing.

In this paper we specifically consider the Nvidia 7800-GTX as an archetype
of the GPU. From here on, references to the GPU can be read as meaning the
GPU within the Nvidia 7800-GTX accelerator. The pixel shading step within the
GPU happens when the 3D geometry is rasterised onto the 2D image array. This
process is shown in Figure 1, each rendered group of 2×2 pixels is termed a quad.
The GPU contains 24 pipelines, arranged as six groups of quad-processors; each
quad-processor operates on 4 pixels containing 16 values. Each pixel pipeline
contains two execution units that can dispatch two independent 4-vector oper-
ations per clock cycle. If there are enough independent operations within the
pixel-shader then each pipeline can dispatch a total of four vector operations
per clock cycle. This gives a theoretical peak performance of 24 × 4 = 96 vector
operations, or 384 single-precision floating point operations, per clock cycle.

The GPU contains a number of ports that are connected to textures stored
in local memory. Each port is uni-directional and allows either pixels to be
read from a texture, or results to be written to a texture. The location of the
pixels output is fixed by the rendering operation and cannot be altered within
a pixel shader instance. In stream processing terminology gather operations,
e.g. accumulation, are possible but scatter operations are not. Read and write
operations cannot be mixed on the same texture within a rendering step.

The lack of concurrent read and write operations, and communication between
execution units, limits the class of programs that can be executed in a shader
program, in particular modifying intermediate results is not directly possible. A
solution to this problem called ping-ponging has been developed by the general
purpose community [10]. The technique shown in Figure 2 uses multiple shader
programs executing in sequence, with the textures holding intermediate results
being written in one pass, and then read in a subsequent pass. We have identified
the implementation of modular exponentiation using RNS as possible using this
technique. There is a constant overhead associated with the setup of each pixel
shader program, split between the OpenGL API, the graphics card driver and
the latency filling the GPU pipelines. To achieve high-performance, this constant
cost must amortised over a large texture. Increasing the number of ping-ponging
steps increases the size of data-set required to break-even.
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Fig. 2. Ping-pong operation in the GPU to produce intermediate results

Texture lookup within a pixel shader allows any pixel in a texture bound to
an input port to be read. Texture lookups are not free operations; at a core
frequency of 430 MHz, latency is in the order of 100 clock cycles. Exposing this
latency is not feasible so it is hidden by multi-threading the quads processed
on each quad-processor. Quads are issued in large batches, and all reads from
instances within those batches are issued to a cache. This produces the two
dimensional cache locality that is observed in GPU execution. Once a pixel has
passed through the pipeline it is retired into the texture buffer. Recombination of
the output stream is performed by 16 Raster Operators (ROP) which introduce a
bottleneck of 25.6GB/s bandwidth shared between all shader instances in every
pass. This hard limit creates a lower bound of six cycles on the execution of each
shader instance; lacking the operations to fill these “free” cycles is a bottleneck.

3 Realising Modular Exponentiation With RNS

The RSA [22] public key cryptosystem uses a public key pair (N, e) where N
is chosen to be the product of two large primes p and q that are kept secret. A
private key d is selected such that e · d ≡ 1 (mod φ(N)). To encrypt a plaintext
message m, the ciphertext c is computed as c = me (mod N) while to reverse
the operation and decrypt the ciphertext one computes m = cd (mod N). As
such, the core computational requirement is efficient arithmetic modulo N , in
particular modular exponentiation. Efficient realisation of this primitive relies
heavily on efficient modular multiplication as a building block.
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We focus on implementing modular multiplication using a Residue Number
System (RNS) with standard values of N ; that is, taking N as a 1024-bit number.
The advantage of using RNS is that operations such as addition and multiplica-
tion can be computed independently for the digits that represent a given value.
As such, RNS operations can be highly efficient on a vector processor, such as
the GPU, since one can operate component-wise in parallel across a vector of
digits. Beyond this, selection of the exponentiation algorithm itself requires some
analysis of the trade-off between time and space; see Menezes et al. [14, Chapter
14] for an overview.

In the specific case of RSA, the performance of a single modular exponentia-
tion can be improved by employing small encryption exponent variants and the
Chinese Remainder Theorem (CRT) [20] to accelerate the public and private key
operations respectively. Since these cases are essentially specialisations of general
modular exponentiation, we do not consider them. Instead we focus on using the
GPU to implement the general case; one can expect performance improvements
by specialising our techniques to suit, but this is a somewhat trivial step.

More relevant performance improvements can be achieved over multiple invo-
cations of the modular exponentiation primitive. Consider an application where
one is required to decrypt k ciphertexts ci with the same decryption exponent,
i.e.

mi = cd
i (mod Ni), i ∈ {1, 2, . . . k}. (1)

These separate computations can be viewed as a single SIMD-parallel program;
control flow is uniform over the k operations, while the data values differ. As
justification consider a server communicating with k clients: each client encrypts
and communicates information using a single public key pair; batches of cipher-
texts are decrypted with a common exponent. Considering this form of operation
is important since it enables us to capitalised on both fine-grained parallelism at
the RNS arithmetic level, and course-grained parallelism in the exponentiation
level.

3.1 Standard Arithmetic in an RNS

Numbers are stored in a conventional radix number representation by selecting
coefficients of the various powers of the radix that sum to the number. On
processors with a w-bit word size, one typically selects the radix b = 2w so that
each coefficient can be stored in a separate word. An RNS operates by selecting
a basis, a set of co-prime integers that are fixed for all of the numbers being
operated upon. An example basis B might be defined as

B = 〈 B[1], B[2], . . . , B[n] 〉 with gcd(B[i], B[j]) = 1 whenever i 	= j

For efficiency, each of the moduli B[i] should fit within a word. The size of a
basis is defined as the product of the moduli, that is

|B| =
n∏

i=1

B[i]
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such that the largest uniquely representable number is less than |B|. Arithmetic
operations performed in B implicitly produce results modulo |B|.

When the integer x is encoded into an RNS representation in the basis B, it
is stored as a vector of words; there are n words, one for each B[i] ∈ B. Each
component of the vector holds the residue of x modulo the respective B[i]. Thus,
using standard notation, the encoding of x under basis B is the vector

xB =< x mod B[1], x mod B[2], . . . , x mod B[n] >

such that xB [i] denotes the i-th component of the vector. The Chinese Remainder
Theorem (CRT) defines a bijection between the integers modulo |B| and the set
of representations stored in the basis B. To decode xB , the CRT is applied

x =
n∑

i=1

(

B̂[i] · xB[i]

B̂[i]
mod B[i]

)

mod |B|

where B̂[i] = |B|
B[i] . It is useful to rewrite the CRT as shown in Equation 2.

In this form the reduction factor k is directly expressed, which is used by the
base extension algorithms in Section 3.3. Note that unless values are initially
stored or transmitted in RNS representation, the conversion process represents
an overhead.

x =
n∑

i=1

B̂[i] · xB[i]

B̂[i]
− k|B| (2)

Multiplication and addition of two integers xB and yB, encoded using an RNS
representation under the basis B, is performed component-wise on the vectors.
For example, multiplication is given by the vector

xB ·yB = 〈 x[1]·y[1] mod B[1], x[2]·y[2] mod B[2], . . . , x[n] ·y[n] mod B[n] 〉

Each component is independent, and so on a vector architecture individual terms
in the computation can be evaluated in parallel. Assuming m execution units on
the GPU, and n moduli in the RNS basis, then a single operation will only take⌈

n
m

⌉
clock cycles. Eliminating the communication, and hence synchronisation,

between the execution units makes this speed possible. It is imperative to em-
phasise this advantage of RNS; propagation of carries between words within the
GPU is very difficult to achieve and thus SIMD-parallel methods for realising
arithmetic modulo N on general purpose processors are not viable.

3.2 Modular Arithmetic in an RNS

Although we have described standard multiplication using RNS, implementation
of modular exponentiation depends on modular multiplication. In a positional
number system this operation is commonly performed using Montgomery rep-
resentation [15]. To define the Montgomery representation of x, denoted xM ,
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Algorithm 1. Cox-Rower Algorithm [21] for Montgomery multiplication in RNS

Input : x and y, both encoded into A and B.
Output: x · y · A−1, encoded into both A and B.

In Base A In Base B

sA ← xA · yA sB ← xB · yB

tB ← sB ·
(
−N−1 mod |B|

)

base extend tA ← tB

uA ← tA · NA

vA ← sA + uA

wA ← vA ·
(
|B|−1 mod A

)

base extend wA → wB

return wA, wB

one selects an R = bt > N for some integer t; the representation then specifies
that xM ≡ xR (mod N). To compute the product of xM and yM , termed Mont-
gomery multiplication, one interleaves a standard integer multiplication with an
efficient reduction by R

xM � yM = xMyMR−1

The same basic approach can be applied to integers represented in an RNS [18,21].
As the suitable input range of the Posch algorithm [18] is tighter than the output
produced, a conditional subtraction may be required. To avoid this conditional
control flow we have used the Cox-Rower algorithm of Kawamura et al. [21].
Roughly, a basis |A| is chosen as the R by which intermediate reductions are
performed. Operations performed within the basis A are implicitly reduced by
|A| for free. Montgomery multiplication requires the use of integers up to RN ,
or |A|N in size. In order to represent numbers larger than |A| a second basis B
is chosen.

The combination of the values from A and B allow representation of integers
less than |A| · |B|. Consideration of the residues of the integer stored in either
basis allows a free reduction by |A| or by |B|. To take advantage of this free
reduction, we require a base extension operation. When a number represented
in RNS basis A, say xA, is extended to basis B to form xB = xA mod B, the
residue of x mod |A| is computed modulo each of the moduli in B.

Algorithm 1 details the Cox-Rower algorithm for Montgomery multiplication
in an RNS. The algorithm computes the product in both bases, using the product
modulo the first basis to compute the reduction. Each of the basic arithmetic
operations on encoded numbers is highly efficient on a vector architecture as
are computed component-wise in parallel. Efficient implementation of the Mont-
gomery Multiplication requires both the reduction of xA modulo |A|, and the
base extension to be inexpensive. Note that in the RNS representation A, reduc-
tion by |A| is free, as it is a side-effect of representation in that basis.
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3.3 Base Extension

There are several well-known algorithms for RNS base extension in the literature
[24,19,21]. In each case the convention is to measure time complexity (or circuit
depth) by the number of operations to produce a residue modulo a single prime.
For use in Montgomery multiplication as described above, each algorithm must
be executed n times to produce residues for each target moduli.

The earliest result is the Szabo-Tanaka algorithm [24] with O(n) time com-
plexity. The RNS number is first converted into a Mixed Residue System (MRS).
The MRS is a positional format where the coefficients of the digits are products
of the primes in the RNS system, rather than powers of a radix. So the RNS
value xA would be represented in MRS as an n-vector m(xA) such that

xA =
n∑

i=1

⎛

⎝m(xA)[i] ·
i−1∏

j=0

A[j]

⎞

⎠ where A[0] = 1

This conversion is achieved in an n-step process. In each step the residue of
the smallest remaining prime is used as the next MRS digit. This MRS digit
is subtracted from the remaining residues, and the resultant number is an ex-
act product of the prime; the number can be divided efficiently by the prime
through multiplication by the inverse. Each step consume a single digit of the
RNS representation and produces a single digit in the MRS representation. The
Szabo-Tanaka algorithm then proceeds to accumulate the product of each MRS
digit and its digit coefficient modulo each of the target moduli to construct
the RNS representation. To allow single word operations the residues of the
coefficients can be precomputed. The algorithm is highly suitable for a vector
architecture as it uses uniform control flow over each vector component.

Posch et al. [19] and Kawamura et al. [21] both achieve O(log n). The ap-
proaches are similar and use the CRT as formulated in Equation 2, computing a
partial approximation of k. The computation is iterated until the result has con-
verged to within a suitable error bound. The iterative process requires complex
control-flow creating inefficiency in the GPU programming model.

Shenoy and Kumaresan [23] claim that an extra redundant residue can be car-
ried through arithmetic operations, and used to speed up the conversion process.
Unfortunately their approach does not appear to work for modulo arithmetic.
Assuming that our system operates in basis B, all arithmetic operations are im-
plicitly modulo |B|. The redundant channel r is co-prime to |B| and thus results
mod r cannot be “carried through” from one operation to another. Whenever
the result of an operation is greater than |B|, the result in the redundant chan-
nel would need to be reduced by |B| before the reduction by r. To make this
approach work for systems using modulo arithmetic, each operation requires an
expensive reduction into base r before the redundant channel can be used to
speed up the reduction for the other bases in the system.
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Algorithm 2. Cox-Rower Montgomery multiplier with Szabo-Tanaka Extension

Input : xA, xB and yA, yB.
Output: x · y · A−1, encoded into wA, wB.

Stage1 sA ← xA · yB ; sB ← xB · yB ; tB ← sB · −N−1 (mod |B|)

Stage2 for i = 1 upto n do
m[i] ← tB [i] ;
tB [i+1 .. n] ← tB [i+1 .. n] − tB[i] ;
tB [i+1 .. n] ← tB [i+1 .. n] · B−1[i, n]

Stage3 for i = 1 upto n do
tA[i] ←

∑n
j m[j] · CA[i, j] (mod |A|)

Stage4 uA = tA · N ; vA = sA + uA ; wA = vA · |B|−1 (mod |A|)

Stage5 for i = 0 upto n do
m[i] ← wA[i] ;
wA[i+1 .. n] ← wA[i+1 .. n] − wA[i] ;
wA[i+1 .. n] ← wA[i+1 .. n] · A−1[i, n]

Stage6 for i = 1 upto n do
wB [i] ←

∑n
j m[j] · CB [i, j] (mod |B|)

return wA, wB

4 Mapping RNS Arithmetic to the GPU

Algorithm 2 is an overview of our GPU implementation of Montgomery multi-
plication. In the array-language syntax each variable refers to a vector, and an
indexed variable refers to a single component. The algorithm describes opera-
tions on a vector architecture without specifying an explicit representation. On
the GPU each stage will be encoded as a separate shader program written in
the OpenGL Shading Language (GLSL [17]). One instance of the shader will
execute for each vector component (each vector is the same length). Operations
performed over vectors refer to a component-wise application; vector operations
do not require communication between shaders.

The horizontal bars that separate each stage represent parallel barriers in the
algorithm; either a communication is required between independent shaders, or
a change in the shape of the control-flow that executes. As the control-flow of
each shader is lock-stepped this requires a new rendering operation. Executing
single instances of the shader over the different components of a vector provides a
single implicit loop; the explicit loops must either be unfolded within the shader
or implemented in multiple rendering steps. When communication is required
between individual shaders in the loop then a new rendering step will be required.
For example the loop in Stage 2 performs an update on the elements of tB beyond
the i-th position. Each iteration i + 1 requires the updated value from the i-th
position. Hence each iteration of the loop requires a new rendering step, both as
a barrier and to allow the computed value to be retrieve from the ping-pong.
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Stages one and four constitute the Cox-Rower algorithm [21] for Montgomery
multiplication in RNS. Variable names are retained from Algorithm 1 for clarity.
Stages two and three together form a single base extension; converting the RNS
value in tB into MRS form in the vector m, then reducing these digits by the
moduli of basis A to produce tA = tB mod A. The matrix B−1 stores the inverse
of each prime in B under every other prime. The MRS coefficients reduced by
each prime in A are stored in the matrix CA. The operation is repeated in stages
five and six, extending wA into wB to provide the result in both bases.

The most important issue in implementing Algorithm 1 is how the vector
components are mapped into the GPU. Memory on the GPU is organised as
two dimensional arrays called textures. Each element (pixel) is a tuple of four
floating-point values. The floating-point format uses a 24-bit mantissa that al-
lows the representation of integers up to 224 − 1. Within this range arithmetic
operations produce the correct values. When this range is exceeded precision is
lost as the floating-point format stores the most significant bits. This poses a
significant problem for cryptographic application where the least significant bits
are required.

There are two aspects to the issue of choosing a mapping from the vectors in
Algorithm 1 that both impact performance. The issue of how to represent words
within each floating point value is covered in Section 4.1. How the arrangement
of the tuples of floating point values affects the execution of shaders is covered
in Section 4.2. Neither topic can be explained completely independently of the
other and unfortunately some material is split across both sections. In Section 4.3
we describe the performance results of the different choices of representation.

4.1 Floating-Point Arithmetic

The most problematic operation is multiplication of two words, and then reduc-
ing the result by a modulus in the system. The simplest method of avoiding
overflow is to use half-word values; bounding the moduli by 212. This ensures
that products are correctly represented in a single word and the GLSL mod
operation can be used for reduction. Twice as many moduli are required when
they are restricted to half-words, this causes two major problems: the necessary
memory bandwidth is doubled, the complexity of the base extension is O(n2)
so doubling the number of digits will quadruple the amount of computation re-
quired. The main advantages are the simplicity of the implementation and the
fast speed of word-sized modulo multiplications. The mod compiles into 3 in-
structions that are executed in 1.5 cycles producing a modular multiplication of
2 cycles. In the results section we refer to the code using this representaton as
Implementation-A.

An alternative approach is to use primes less than 224 as moduli, and perform
multi-precision arithmetic to handle the double-word product. Techniques [13]
for multi-precision arithmetic in floating point are well known. Dekker-style splits
can be used to compute the low-order bits by subtracting partial products from
the high-order bits in a floating-point product. The 15 operations required are
executed in 7.5 cycles but the technique requires guard bits in the floating-point
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unit to guarantee correctness. Experiments to determine the validity of this ap-
proach on the floating-point implementation in the 7800-GTX were unsuccesful.

The reductions in complexity and memory traffic from full-word moduli are
desirable, and so we have investigated alternatives to the multi-precision ap-
proach. One possibility is to pack two half-words in every word. This creates the
reduction in memory traffic, and once a word is retrieved it can be unpacked into
two separate values. The modular multiplication is then the 2 cycle operation
over half-words. The number of digits in the system is not reduced, but there is
still a performance advantage. Unfortunately the Nvidia compiler necessary to
use GLSL on the GPU is still immature, and has difficulty performing register
colouring correctly when this much data is active in a shader. Examination of
the output of the compiler shows that twice as many registers as required are
allocated, and that the actual performance of the shader suffers. As there is
no way to load binary code directly onto the device it is not possible to check
the performance of correctly scheduled code with proper register allocation. Ex-
periments with similar code fragments suggest that when the compiler matures
enough to compile this code correctly there will be a significant increase in perfor-
mance for this method. Similar experiments [25] have shown dramatic decreases
in performance for each power of two that the number of registers exceeds, this
suggests that scheduling shader invocations with a shared register bank causes
the architectural problem, and that the compiler is unable to avoid this case.
This representation is used in Implementation-C along with the specialisation
techniques described below.

Another representation is provided by the condition that RNS moduli are not
required to be prime, merely coprime to each other. Consider a modulus m chosen
with two prime factors p and q, such that m < 224. For a , b ∈ (0 .. m−1) the
product a · b mod m can be computed without intermediate values that exceed
224. To do so, compute:

ap ← a mod p, aq ← a mod q,

bp ← b mod p, bq ← b mod q,

t1 ← ap · bp mod p, t2 ← t1 · q−1 mod p, t3 ← t2 · q,
t4 ← aq · bq mod q, t5 ← t4 · p−1 mod q, t6 ← t5 · p,

(t3 · s(t3) · m) + t6

The modulo operations in each term are necessary to keep the intermediate
values within the word range and prevent overflow. The final term is the product
reduced by m. The function s(x) denotes the sign of x and is a primitive function
in GLSL. This unusual reduction trades multiplications for inexpensive modulo
operations. On the GPU the cost of a word-sized mod is only 1.5 cycles, where-
as the cost of a multiplication that overflows the word is large1. By avoiding
overflow in the floating-point registers with mod operations we are treating them
1 Observed cost per operation increased with the number of operations due to register

spilling in the Nvidia compiler.



376 A. Moss, D. Page, and N.P. Smart

as mantissa sized integer registers. The entire operation takes 16 cycles. Although
this is much higher than the half-word approach the total cost of the shaders is
comparable because register spilling is reduced and the GPU appears to dispatch
the shader faster. In our results this representation is used in Implementation-D.

The reduction described can be seen as an unfolding of the CRT over two
moduli. This leads to our final approach to modular multiplication in the GPU.
The independent results under p and q do not have to be recombined on each
operation. Each digit in the RNS that we are using is represented by a smaller
scale RNS comprised of two primes. This digit can be operated on modp and
modq for fast operation, or the entire digit can be used as part of the larger
RNS. This choice of representation with a fast map between the two allows us
to compute the chain of operations in a shader independently in each base, but
to execute the base conversion over a lower number of digits and so reduce the
complexity. When this reduction is combined with the specialisation technique
described below, many of the mappings from x mod m �→ 〈xp, xq〉 are paired
with mappings from 〈xp, xq〉 �→ x mod m and so can be removed from the
computation. Each of the individual modular multiplications are primitive GLSL
mod operations. This results in a substantial increase in overall performance. The
code using this technique is refered to as Implementation-E.

4.2 Memory Layout and Shader Specialisation

Each instance of a shader executes on a single pixel in a texture. Four floating-
point values are computed by the execution of every shader, and are stored in a
fixed location within the texture. When a shader is rendered over a rectangle in
a texture the output location is fixed for each instance. The execution of each
shader then proceeds in lockstep, with the same instructions being dispatched
in each processor pipeline.

Initially the only distinction between the execution of the programs is the co-
ordinate of the pixel, available to the program as a 2D vector gl TexCoord[0].
One major difficulty in writing GPU shaders is distinguishing the computation in
that particular instance, from that performed in every other instance. Although
shaders can make differing texture lookups from other instances, sufficient infor-
mation to decide which data to lookup must be encoded in the pixel coordinates.

Our strategy for memory layout is to encode which instance, and which vector
components within that instance a particular pixel holds by the spatial location
of the pixel. Each row of the texture holds c instances. The pixels containing
the first instance are located in columns 0, c, 2c, . . ., nc where 4n is the number
of moduli in the RSA system. The moduli associated with the 4 residues in a
pixel are consistent across c columns, and the entire height of the texture. The
advantage of this striding pattern is that contiguous rectangles describe pixels
associated with particular moduli.

Of the four textures available for input and output, we use two to perform
a ping-pong operation. Essentially these textures are used to hold the new and
previous states of mutable variables. For the case of 1024-bit instances, 88 moduli
less than 212 describe the system, or 44 moduli less than 224. Because values are
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required in bases A and B we split the textures in two vertically and have two
independent sets of columns to hold values. We use the largest textures possible2

on the drivers and hardware which are 1024×1024 pixels in size. For the half-
word case this allows 23 instances per row for a total of 23552 parallel instances.
In the full-word case a texture stores 47104 parallel instances. For the binary
operations in the Cox-Rower Algorithm we use a third texture as a data source.
The texture is updated between modular multiplication algorithms as part of
the exponentiation. The fourth texture contains auxiliary read-only data such
as the values of inverses, primes and other data.

Our initial experimental results used this layout scheme, but profiling of the
performance suggested that the memory traffic reading the auxiliary texture
dominated the runtime. Current work in the GPGPU community suggests that
this approach of treating textures as arrays is common. One reason for this is that
the ‘arrays’ offered in GLSL are not true arrays because of hardware limitations.
All array indices must be compile-time constants, which limits the potential for
storing auxiliary data in local lookup tables and indexing it by the current pixel
coordinate.

To circumvent this restriction we have employed a program transformation
technique called specialisation. Some of the inputs to a specialised program are
fixed to constants known at compile-time. This allows constant propagation to
remove operations in the compiled program. Constants are created by fissioning
program templates into separate shaders that run over c columns in the texture.
For each pixel rendered by a particular shader the set of moduli is constant.
This propagates through the program and makes the other auxiliary data con-
stant by virtue of the fact that the lookup table indices become constant. After
specialisation the program template generates either 11 or 22 separate shaders,
depending on if half-word or full-word arithmetic is used. Within each shader
the constant auxiliary data is coded as a local array of constants. In GLSL for
Nvidia GPUs constant data is encoded within the instruction stream, removing
all memory transfers to fetch the data. As a side-effect this frees the fourth tex-
ture which may allow performance improvements in the future. An example of
this technique is shown in Listing 1.1. The code is a program template for the
MRS reduction step in Implementation-A. The <1> syntax refers to terms that
are compile-time constants, our implementation generates multiple shaders from
each template replacing the parameters with constant values in each instance
— these generated programs can then be compiled as normal GLSL code. The
implementations that use half-word values store a 1024-bit number in 22 pix-
els, using 4 floating-point numbers in each. Each template generates 22 separate
shaders in this case. The full-word versions store the same value as 11 pixels,
and generate 11 separate shader programs.

Despite the increased costs of running shaders over smaller regions, and flushing
the program cache on the GPU because of the large number of programs being
executed — the technique still produces a significant increase in performance.

2 The 7800-GTX supports 4096×4096 textures but we were unable to get stable results
with the current drivers.



378 A. Moss, D. Page, and N.P. Smart

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000  100000

A
ve

ra
ge

 e
xp

 ti
m

e 
(m

s)

Parallel exponentiations

Performance of Version E on 1024-bit exponentiation

Version Min Time

CPU 17.0ms

GPU A 21.5ms
GPU B 12.5ms
GPU C 11.5ms
GPU D 9.8ms
GPU E 5.7ms

Fig. 3. Performance of 1024-bit Modular Exponentiation

4.3 Experimental Results

Our goal in evaluating the performance of our GPU based implementation is
comparison with a roughly equivalent implementation on a general purpose pro-
cessor (CPU), namely an 2.2 GHz AMD-64 3200+. This processor was mounted
in a computer that also acted as the host for the graphics accelerator; all exper-
iments were conducted on this common platform.

To explore the optimisation space for the algorithm on the 7800-GTX and
gauge the importance of the trade-offs described in Section 4 we implemented
several versions. In all cases the modular multiplication was used within a binary
exponentiation method [14, Chapter 14] to compute 1024-bit modular exponen-
tiations. The exponents were all chosen to have hamming weights of 512. A
standard C implementation of Montgomery multiplication was written for our
CPU; this included small assembly language inserts to expose critical features
in the processor (i.e. retrieving double word products). The CPU based Mont-
gomery multiplication used a 4-bit sliding window method [14, Chapter 14] to
compute the same 1024-bit modular exponentiations. The CPU implementation
achieved 17ms on our hardware, using sliding windows which we have not imple-
mented on the GPU due to difficulties in memory management. The performance
of each implementation is shown in Figure 3 along with the details of how the
increase in parallelism is reflected in the average operation times (throughput).
The latency for the data in this graph is the number of operations × the average
time.

Implementation-A. This is an unoptimised version that uses the half-word
representation and no specialisation. This was a first attempt to naively
treat the GPU as a set of fast memory arrays and ALUs. The result was
somewhat disappointing given the 35 : 1 performance ratio between the two
platforms.

Implementation-B. This version is specialised over 22 shaders for each tem-
plate; expanding the templates produces 2 · 22 + 8 = 52 shaders in total.
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The half-word representation is still used but some low level optimisations
including changes to the internal texture format used by OpenGL have been
applied. The increase in performance is dramatic, although somewhat ham-
pered by the switching cost of 52 separate shaders being executed.

Implementation-C. This version alters Implementation-B by adapting the
full-word data representation; there are still 52 shaders but with an overall
increase in performance because of the lower memory bandwidth require-
ments.

Implementation-D. This version alters Implementation-B by adapting smooth
word-size representation. Although the reduction is expensive compared to
the previous methods, the combination of reduction and only 11 shaders in-
creases the performance again. The increase was not uniform, the shaders for
Stage2 benefited from increased performance, while the shaders for Stage3
decreased in performance by 50%. The relative expense of the reduction
(compared to GLSL mod methods) means that performance is dependent on
the memory bandwidth to computation ratio in the particular shader.

Implementation-E. Finally, this version alters Implementation-D, still using
the smooth word-size representation, by substituting the reductions for GLSL
mod operations working in each of the paired bases. The improvement in
performance is dramatic, resulting in a 3 fold increase over the CPU imple-
mentation. This result is despite the lack of windowing in the GPU imple-
mentation.

Each of these figures was produced over many parallel instances of exponentia-
tions which results in a large latency. This is necessary because the drivers are
optimised for graphics workloads, and the rapid switching of shader programs
is causing problems. Some of the latency issues could be rectified if Nvidia opti-
mised their drivers for non-graphics workloads, but this would require an uptake
of GPGPU in the marketplace.

Our performance figures for exponentiation on the CPU should be seen only
as a broad guideline. The implementation uses a common choice of algorithms
but has not had extensive low-level optimisation. Reports from other researchers
and the figures in the Crypto++ benchmarks suggest that aggressive low-level
optimisation can reduce this figure on our reference platform to about 5ms. The
GPU implementation cannot be aggressively optimised in the same way, but
gives results comparable to the fastest CPU implementation. Our experiments
suggest that given low-level access to the GPU (bypassing the GLSL compiler)
there are similar potential performance increases in the GPU platform.

5 Conclusion

We have presented an investigation into the implementation and performance of
modular exponentiation, the core computational operation in cryptosystems such
as RSA, on a commodity GPU graphics accelerator. In a sense, this work repre-
sents an interesting aside from implementation on devices normally constrained
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by a lack of computational or memory resources: here the constraint is architec-
ture targeted at a different application domain. Previous results in GPGPU have
shown that such a limited architecture can be successfully targeted at problems
outside of the intended domain. We believe that integer modular exponentiation
is the most radically different problem domain so far reported.

In an attempt to mitigate this difference and fit the algorithm into the GPU
programming model, we employed vector arithmetic in an RNS which allowed
us to capitalise on fine-grained SIMD-parallel floating point computation. Our
experimental results show that there is a significant latency associated with in-
voking operations on the GPU, due to overhead imposed by OpenGL and transfer
of data to and from the accelerator. Even so, if a large number of similar mod-
ular exponentiations are required, the GPU can capitalise on course-grained
parallelism at the exponentiation level and out-perform a CPU. Although this
comparison is uneven in a number of respects (the CPU uses windowed expo-
nentiation while the GPU can not, the GPU uses an unreasonably large number
of parallel exponentiations) it is crucial to see that exploiting a commodity re-
source for cryptographic primitives offers interesting possibilities for the future.
Although current drivers miss-report 100% utilisation of the CPU during GPU
operation, this is not a requirement since synchronisation between CPU and
GPU is essentially implemented as a spin-lock. Most of the GPU computation
time does not require CPU intervention and manually scheduling code before
calling the glFinish() synchronisation allows use of the CPU for other tasks.
This raises the possibility of utilising an otherwise idle resource for cryptographic
processing.

5.1 Further Work

The advantages and disadvantages highlighted by our approach detail a number
of issues worthy of further research; we expect that this will significantly improve
GPU performance beyond the presented proof of concept.

– Due to the difficulty of managing multiple textures (that might represent
pre-computed input, for example) on the GPU, in this work we opted to use
a very basic exponentiation algorithm. Clearly huge advantages can be made
if some form of pre-computation and windowing can be used [14, Chapter
14]; we aim to investigate this issue as a means of optimisation in further
work. In particular the specialisation technique frees up a texture that can
be used as a second output in multi-texturing.

– A major limiting factor in deploying these techniques in real systems is the
large number of parallel exponentiations that need to be executed in order
to break-even on various overheads imposed by the GPU. In particular, the
driver software for the GPU is optimised to deal with repeated execution
of a limited set of pixel shaders on large data-sets; this contrasts with our
demands for larger numbers of pixel-shaders and comparatively smaller data-
sets.
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– Program transformation and specialisation techniques to generating code
for these exotic and quickly evolving architectures is paramount to success.
Our target architecture forced us to use somewhat complex instruction flows
(consisting of 52 generated shaders); we expect that by specialising, for a
specific RSA exponent for example, the associated overhead can be signif-
icantly reduced. An automated system for achieving this task efficiently is
work in progress.

5.2 Evolving Architectures

The CPU market is rapidly evolving. A new class of architecture is released every
year, with roughly twice the performance of the previous generation. This rapid
progress makes the GPU a desirable target for cryptographic code, however it also
creates a problem that results may not stay relevant for very long. While this paper
was being written a new generation of Nvidia GPU, the 8800-GTX, has been re-
leased. The strict separation between programmer and hardware that is imposed
by the driver allows GPUs to be completely redesigned in each generation.

The new 8800-GTX uses a higher core clock speed and faster memory to
change the memory / computation trade-offs in GPU programming. The vec-
tor units are finer-grained, with 128 scalar ALUs available to the programmer.
The cache is lockable through software and primitive are available to control
the mapping of software instances onto the vector array. Finally, the memory
architecture allows scatter operations which enlarges the set of programs that
can be written.

All of these changes would make interesting future research for implementing
cryptographic code. However the results in this paper are still relevant as the
cost in terms of transistor count, or power consumption for these more fully
featured ALUs is higher than the simple ALUs used in the 7800-GTX. Hence
these results are applicable to future resource constrained systems with a similar
architecture.
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Appendix: Program Listing

This source code is a program template. At run-time our implementation sub-
stitutes a constant value for the template parameters indicated by <0> and
<1>. These values are determined by the batch size and control the number
of exponentiation instances encoded into each row, and the size of the texture
respectively.

Listing 1.1. An example program template

1 uniform sampler2D T; // The matrix with intermediate results

2 // from the previous stage of ping -pong

3 uniform sampler2D P; // The matrix with auxillery precomputed data

4 // such as A,B,B^-1 etc

5 uniform float i; // The loop index - shader executes onces per iteration

6 void main(void)

7 {

8 vec2 where = gl_TexCoord [0].xy; // Retrieve the xy parameters for

9 // this instance.

10 // Which of the moduli covers this target pixel

11 float base = floor( where.x / <0> );

12

13 // Which exponentiation instance we are within the row

14 float inst = mod( where.x, <0> );

15

16 // The location within P of the inverse , the scaling accounts for

17 // coordinate normalisation

18 vec2 invWhere = vec2( i, base ) / <1>;

19 vec4 bInvs = texture2D( P, invWhere );

20

21 // The moduli in base A for this pixel (4 components of tB)

22 vec4 primes = texture2D( P, vec2 (88+base ,0) / <1> );

23

24 // Retrieve the "current" values from the ping -pong texture

25 vec4 v = texture2D( T, where / <1> );

26 // Retreive the values of the current subtraction digit from P (v’)

27 vec4 v2 = texture2D( T, vec2(i * <0> +inst ,where.y) / <1> );

28 vec4 t2 = mod( (v-v2) * bInvs , primes );

29

30 // Switch between passing through v or t2. This guarded form is

31 // recognised by the compiler and produces straight -line code

32 float c = (where.x<=i) ? 1 : 0;

33 gl_FragColor = v*vec4(c) + t2*(1-( vec4)c);

34 }
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Abstract. We motivate and investigate a new cryptographic primitive
that we call multi-key hierarchical identity-based signatures (multi-key
HIBS). Using this primitive, a user is able to prove possession of a set
of identity-based private keys associated with nodes at arbitrary levels
of a hierarchy when signing a message. Our primitive is related to, but
distinct from, the notions of identity-based multi-signatures and aggre-
gate signatures. We develop a security model for multi-key HIBS. We
then present and prove secure an efficient multi-key HIBS scheme that
is based on the Gentry-Silverberg hierarchical identity-based signature
scheme.

1 Introduction

Research in identity-based cryptography (IBC) [32] has proliferated in recent
years since the discovery of novel pairing-based key agreement protocols due to
Sakai et al. [30] and Joux [23], and the seminal work of Boneh and Franklin [8]
giving the first secure and practical identity-based encryption (IBE) scheme.

Several proposals for identity-based signature (IBS) schemes, such
as [12,21,26], followed quickly after Boneh and Franklin’s publication [8]. More
recent proposals for IBS can be found in [4,5,17,27], for example. However, IBS
schemes are arguably less interesting than IBE schemes. They suffer from the
key escrow property that is inherent in IBC, which makes non-repudiation of
these signatures more difficult to achieve. Moreover, there is a generic construc-
tion that creates an IBS scheme from two instantiations of any (normal) pub-
lic key signature scheme [5]. This is related to the fact that, with a normal,
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certificate-based signature, all information necessary for verification can be in-
cluded along with the basic signature to create a self-contained package. Nev-
ertheless, many real world applications of identity-based signatures have been
proposed in the literature, such as lightweight email authentication [1], and bio-
metric authentication [11]. Attractive variants of identity-based signatures, for
example identity-based multi-signatures (IBMS) [6,18], identity-based aggregate
signatures (IBAS) [18] and identity-based threshold signatures (IBTS) [2] have
also been proposed. These applications and primitives offer other advantages
over the use of certificate-based signatures, such as significant savings in com-
munication bandwidth. Moreover, IBS schemes can be deployed in identity-based
infrastructures so as to provide a complement to IBE schemes whilst making use
of the same infrastructural components and code base.

In hierarchical identity-based cryptography (HIBC) [7,10,19,22], multiple lev-
els of private key generators (PKGs) and users form a tree-like structure which
mimics the existing hierarchical PKI model. A user at any level of the tree can
encrypt or sign a message targeting any intended recipient at any level, using
only a set of shared cryptographic system parameters published by the root
PKG. A hierarchical identity-based signature (HIBS, or HIDS in [19]) scheme
is then the analogue of an IBS in the hierarchical setting. One interesting ap-
plication of the hierarchical approach is that it can be used for delegation in a
natural way: an act of delegation can be carried out by the issuance of a private
key by a node in the tree to its child. A delegatee’s delegated credential can be
checked by performing only one signature verification, regardless of the length
of the delegation chain [14].

In this paper, we introduce, motivate and develop a new cryptographic primi-
tive called multi-key hierarchical identity-based signatures (multi-key HIBS). The
essence of this new primitive is as follows. We operate in the setting of HIBC,
but we assume each user owns multiple identifiers and thus possesses a set of cor-
responding private or signing keys. These identifiers may be located at arbitrary
positions in the hierarchy. When a user generates a signature on a message,
he uses a subset of his private keys for signing. Informally, then, a multi-key
HIBS scheme is used to produce a single signature on a selected message using
a set of signing keys. We discuss two potential applications for multi-key HIBS
next, and then explain the relationship between our new primitive and related
cryptographic concepts.

Motivating Examples. Our first example is related to access control in open
distributed environments, such as grid computing systems [15].

There has been a recent trend in research on access control in which user au-
thentication and access control are achieved in a unified way using cryptographic
techniques, for example, policy-based encryption [3,33], attribute-based encryp-
tion [20,28,29] and role signatures [13]. Particularly, the use of roles as identifiers
(in the context of HIBC), or role identifiers and their associated signatures for
access control in [13] has inspired the work presented in this paper.

Role-based access control (RBAC) [31] is well-known for being more scalable
than access control based on user identities. Users are granted membership into
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roles based on their competencies and responsibilities in their organisation. The
operations that a user is permitted to perform are based on the user’s role. Role
signatures, as proposed in [13], are designed to address the problems of inter-
domain principal mapping and authentication of user credentials simultaneously.

It is observed in [13] that a HIBS scheme can be used naturally for RBAC
within a distributed computing environment, such as a grid system, which has
a hierarchical structure. A verification key can be defined by a role identifier
defined within a hierarchical namespace. User authentication and access con-
trol is unified, and credential verification is rendered trivial. An authorisation
service is required to only verify a single signature, produced from the signing
key associated to the role identifier, to both confirm that the user is an authen-
ticated member of an organisation and occupies a particular role within that
organisation.

Suppose, for example, that Alice has been given the roles r1= lecturer, r2=
professor and r3= IEEE member. Let Alice be an employee of university X ,
which in turn is part of the Open University, OU . Then, a role identifier, defined
in a hierarchical namespace, can be of the form “OU, X, ri”, where 1 ≤ i ≤ 3. In
order to abide by the principle of least privilege, Alice should be given the options
of selecting which role(s) she wishes to use when accessing some resources.

Now assume that Alice wants to access some restricted digital documents
stored in the Open Library using roles r2 and r3. In principle, Alice must then sign
an access request using private keys S2 and S3 which correspond to role identifiers
“OU, X, r2” and “OU, X, r3”, respectively. Our multi-key HIBS primitive allows
the access request to be signed using the pair of private keys S2 and S3, while
verification of the signed request uses the pair of associated role identifiers.

Our second example is related to mobile ad hoc network (MANET) applica-
tions. Here, conserving computation and bandwidth are at a premium, so the
use of identity-based techniques is attractive [24]. However, it is commonly as-
sumed in the MANET setting that there are no trusted entities that can play the
role of PKGs (or trusted authorities). Moreover, nodes may be compromised or
unavailable. Therefore, it is desirable to distribute the functions of PKGs across
multiple network nodes. In the most general setting, the distributed identity-
based key infrastructure that results may even be hierarchical in nature. Hence
a user in the network may receive multiple private keys from different nodes, yet
wish to efficiently demonstrate possession of some or all of these keys when cre-
ating a signature. For example, this may be required as part of an identity-based
key exchange protocol used to create a session key shared between two network
nodes. In this situation, a multi-key HIBS scheme is just what is needed.

Related Concepts. Our concept of multi-key HIBS is closely related to the
concepts of identity-based multi-signatures (IBMS) [6,18] and identity-based ag-
gregate signatures (IBAS) [18].

In multi-signatures, a set of users all sign the same message and collectively
produce a single signature. An IBMS scheme may be either non-interactive or
interactive; this property is related to whether or not individual signatures can
be combined to produce a multi-signature by an outside agency. An example
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of the former type of IBMS scheme can be found in [18], and of the latter in
[6]. In an aggregate signature scheme [9], each user can sign a different message;
subsequently a set of signatures can be turned into a single signature via an
aggregation process which may be executed by any entity. The first efficient
constructions of IBAS were obtained in [18], but under the restriction that signers
coordinate some state before signing. A non-interactive IBMS scheme can be
obtained from any IBAS scheme.

It is easy to see that the basic functionality needed in our motivating exam-
ples can be obtained by just using an IBMS scheme (of either type), and hence
also by using an IBAS scheme. However, this assumes that hierarchical IBMS or
IBAS schemes with the required degree of flexibility can be obtained; currently
available schemes operate only in the basic IBC setting having a single level in
the hierarchy. Moreover, the fact that all signing keys are possessed by a single
party in the multi-key HIBS setting opens up the possibility of making signif-
icant efficiency gains (particularly in the signing algorithm) by using a scheme
designed from scratch. Indeed, we show here that such gains can be realised in
practice. This efficiency gain highlights one of the main differences between our
new concept of multi-key HIBS and the existing notions of IBMS/IBAS.

A second main difference arises when we consider the strength of security
model that we introduce here for multi-key HIBS. Our model allows the adver-
sary to obtain all but one of the signing keys involved in its output forgery and
gives the adversary full access to a signing oracle. This is comparable to the
multi-signer security model introduced for interactive IBMS in [6], which seems
to be the strongest security model for IBMS introduced to date. However, our
model is much stronger than the model for non-interactive IBMS given in [18]:
the restrictions on adversarial behaviour in [18] are such that no identity may
be involved in two different queries to the signing oracle (on different messages).
This seems very limited in comparison to our model.1

Yet a third difference arises from the hierarchical and flexible nature of our
multi-key HIBS definition and its concrete instantiations: in contrast to existing
definitions and realisations of IBMS/IBAS, we work in a fully hierarchical set-
ting, and allow the identifiers involved to be located at arbitrary positions in the
hierarchy. A special case of our instantiations yields an efficient multi-key IBS
(one-level) scheme.

Our new primitive is also loosely related to the concept of IBTS [2]. Generally
speaking, a (t, n)-IBTS scheme allows a set of t (the threshold) out of n parties
to first compute individual signature shares; these shares are then combined into
one single signature. However, IBTS schemes are interactive, and generally much
less efficient than our multi-key HIBS schemes. Another related idea is Boneh
and Franklin’s technique [8] of distributing an identity-based master secret over
multiple PKGs using Shamir secret sharing. Boneh and Franklin observed that

1 Note that the paper [18] does not explicitly include a security model for IBMS,
though it does contain a concrete IBMS scheme and claim of security for that
scheme. However, one can infer the IBMS model intended by the authors of [18]
by specialising their state-oriented IBAS model to the stateless IBMS setting.
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the master secret in their IBE scheme can be distributed in a t-out-of-n fashion
by giving each of the n PKGs one share of the master secret. A user can then
construct his private key by obtaining shares of his private key from each of
the t chosen PKGs and then combining these using the appropriate Lagrange
coefficients. Our new primitive can be seen as being related to a special case of
this idea in which t = n. However, we deal with signatures and not encryption,
we work in the hierarchical setting and not the basic identity-based setting,
and our multi-key HIBS schemes allow signatures to be constructed in a more
flexible way from private keys corresponding to nodes at arbitrary positions in
the hierarchy.

Our Results. We provide a formal definition of multi-key HIBS and an appro-
priate security model for this primitive. We then present a concrete and provably
secure multi-key HIBS scheme. Our scheme is provably secure in the Random Or-
acle Model (ROM), assuming the hardness of the computational Diffie-Hellman
problem in groups equipped with a pairing. We consider the strongest possible
security setting, by allowing the adversary arbitrary access to signing and key ex-
traction oracles (subject to obvious limitations needed to prevent the adversary
from trivially winning the security games).

We then show how the complexity of the verification algorithm of our scheme
can be reduced in special cases that depend on the relative positions of nodes
associated with the signing keys used to generate a signature. We also demon-
strate that, in situations where multi-key HIBS are applicable, our concrete
scheme has a much more efficient signing procedure than the currently best
available IBMS schemes [6,18]. Since these IBMS schemes are only one-level (i.e.
non-hierarchical), we make the comparison in the one-level case, even though
our concrete scheme is far more flexible.

In the next section, we provide definitions for our new multi-key HIBS prim-
itive. In Section 3, we propose a concrete multi-key HIBS scheme. Its security
analysis is given in Section 4. Section 5 explains how to optimise our multi-key
HIBS scheme in specific cases. Then, in Section 6, we compare the performance
of our concrete multi-key HIBS scheme with the best IBMS schemes available in
the literature. In Section 7, we present our conclusions and some open problems
suggested by our work.

2 Definitions

2.1 Pairings and Associated Problems

Our scheme makes use of pairings. Let G and GT be two cyclic groups where
|G| = |GT | = q, a large prime. Then an admissible pairing e : G × G → GT has
the following properties:

– Bilinear : Given P, Q, R ∈ G, we have

e(P, Q + R) = e(P, Q) · e(P, R) and e(P + Q, R) = e(P, R) · e(Q, R).
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Hence, for any a, b ∈ Z
∗
q ,

e(aP, bQ) = e(abP, Q) = e(P, abQ) = e(aP, Q)b = e(P, Q)ab.

– Non-degenerate: There exists P ∈ G such that e(P, P ) �= 1.
– Computable: If P, Q ∈ G, then e(P, Q) can be efficiently computed.

Further details on pairings and their implementations using elliptic curves
and the Weil, Tate or related pairings can be found in [16]. Our scheme is easily
adapted to cope with pairings e : G1 × G2 → GT , but we focus here on the
simpler case for ease of presentation.

Let λ denote the security parameter. We say that a randomised algorithm G
is a Bilinear Diffie-Hellman (BDH) parameter generator if: (i) G takes λ > 0 as
input; (ii) G runs in time polynomial in λ; and (iii) G outputs the description
of two groups G and GT of the same prime order q and the description of an
admissible pairing e : G × G → GT . The security of the schemes presented in
this paper is based on the assumed hardness of the computational Diffie-Hellman
(CDH) problem in groups G produced by such a generator. This problem is
defined as follows:

Definition 1. (CDH in a group equipped with a pairing) Given G, GT of the
same prime order q, an admissible pairing e : G×G → GT , and 〈P, aP, bP 〉 ∈ G

for some random P ∈ G and randomly chosen a, b ∈ Z
∗
q, the CDH problem in G

is to compute abP ∈ G.

An algorithm A is said to have advantage ε in solving the CDH problem in G

if

Pr
[
A(P, aP, bP ) = abP ≥ ε

]

where the probability is over the random choice of P in G, the random scalars
a and b in Z

∗
q , and the random bits used by A. (Here we suppress the additional

inputs to A.)

2.2 Multi-key HIBS Scheme

Hierarchical identity-based cryptography involves nodes arranged in a tree struc-
ture, with each node having an identifier. The identifier of an entity is the con-
catenation of the node identifiers in the path from the root to the node associated
with that entity. Assuming the root Private Key Generator (PKG) is located at
level 0, then the identifier of an entity at level t is the concatenation of node
identifiers id1, . . . , idt in which each idi ∈ {0, 1}∗. We denote the concatenation
of node identifiers id1, . . . , idt by identifier IDt. The entity with identifier IDt has
an ancestor at level i with identifier IDi = id1, . . . , idi for 1 ≤ i < t; this entity’s
parent is the node with identifier IDt−1 and its children are all the nodes with
identifiers of the form IDt+1 = id1, . . . , idt, idt+1. We use (Pt, St) to represent
the public/private key pair of the entity with identifier IDt.
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A multi-key hierarchical identity-based signature (multi-key HIBS) scheme
can be regarded as an extended HIBS scheme. It produces signatures in the
hierarchical identity-based setting using sets of signing keys. A multi-key HIBS
scheme is specified by the following algorithms:

Root Setup: This algorithm is performed by the root PKG. It generates the
system parameters and a master secret on input a security parameter λ. The
system parameters, which include a description of the message space M and
the signature space S, will be made publicly available to all entities (PKGs
or users). However, the master secret is known only to the root PKG.

Lower-level Setup: All entities at lower levels must obtain the system pa-
rameters generated by the root PKG. This algorithm allows a lower-level
PKG to establish a secret value to be used to issue private keys to its chil-
dren.

Extract: This algorithm is performed by a PKG (root or lower-level PKG)
with identifier IDt to compute a private key St+1 for any of its children using
the system parameters and its private key (and any other secret information).

Sign: Given a set SK = {Sj
tj

: 1 ≤ j ≤ n} of signing (private) keys, a message
M ∈ M, and the system parameters, this algorithm outputs a signature
σ ∈ S. Here tj denotes the level of the j-th signing key in the set SK.

Verify: Given a signature σ ∈ S, a set ID = {IDj
tj

: 1 ≤ j ≤ n} of identifiers, a
message M ∈ M, and the system parameters, this algorithm outputs valid
or invalid.

We have the obvious consistency requirement: if σ is output by Sign on input
a set SK of private keys and message M , then Verify outputs valid when given
input σ, the set ID of identifiers corresponding to SK, and M .

We remark that the first three algorithms specified above are identical to
those of a HIBS scheme. Moreover, a multi-key HIBS scheme, when used with
a single signing key, is essentially just a normal HIBS scheme. We also remark
that while we have chosen to work with sets of identifiers and private keys, the
definitions (as well as the security model and concrete construction to follow)
can easily be adapted to deal with ordered lists of identifiers and keys.

2.3 Security Model

The security model for a multi-key HIBS scheme is based on the following game
between a challenger and an adversary that extends the normal HIBS security
game [19]:

1. The challenger runs the Root Setup algorithm of the multi-key HIBS
scheme. The resulting system parameters are given to the adversary. The
master secret, however, is kept secret by the challenger.

2. The adversary adaptively issues queries to the challenger. Each query can
be one of the following:
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– Extract: The adversary can ask for the private key associated with any
identifier IDj

tj
= idj

1, . . . , id
j
tj

. The challenger responds by running the
Extract algorithm to generate a private key Sj

tj
, which is then returned

to the adversary.
– Sign: The adversary can ask for the signature associated with a set ID

of identifiers on a message M of its choice. The challenger responds
by running the Sign algorithm using as input a set of signing keys SK
corresponding to the set of identifiers ID, message M , and the system
parameters. The resulting signature σ is returned to the adversary.

3. The adversary outputs a string σ∗, a set of target identifiers ID∗, and a
message M∗. The adversary wins the game if the following are all true:

– Verify(σ∗, ID∗, M∗) = valid;
– There exists an identifier ID′ ∈ ID∗ for which the adversary has not made

an Extract query on ID′ or any of its ancestors;
– The adversary has not made a Sign query on input ID∗, M∗.

The advantage of an adversary A in the above game is defined to be

AdvA = Pr[A wins]

where the probability is taken over all coin tosses made by the challenger and
the adversary.

Note that the usual security model for HIBS is recovered in the case where
all queries involve a single identifier.

3 Construction

We now present a concrete multi-key HIBS scheme, which is adapted from the
Gentry-Silverberg HIBS scheme [19]. We will show in Section 5 how the cost of
the verification algorithm of this scheme can be reduced in specific situations.

Root Setup: The root PKG:
1. runs G on input λ to generate G and GT of prime order q and an admis-

sible pairing e : G × G → GT ;
2. chooses a generator P0 ∈ G;
3. picks a random value s0 ∈ Z

∗
q and sets Q0 = s0P0;

4. selects cryptographic hash functions H1 : {0, 1}∗ → G and H2 :
{0, 1}∗ → G.

The root PKG’s master secret is s0 and the system parameters are 〈G, GT ,
e, q, P0, Q0, H1, H2〉. The message space is M = {0, 1}∗ and the signature
space is S =

⋃
t≥0 G

t+1.

Lower-level Setup: A lower-level entity (lower-level PKG or user) at level
t ≥ 1 picks a random secret st ∈ Z

∗
q .

Extract: For an entity with identifier IDt = id1, . . . , idt, the entity’s parent:
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1. computes Pt = H1(IDt) ∈ G;
2. sets St =

∑t
i=1 si−1Pi = St−1 + st−1Pt;

3. defines Qi = siP0 for 1 ≤ i ≤ t − 1.
The private key 〈St, Q1, . . . , Qt−1〉 is given to the entity by its parent. Note
that up to this point, our scheme is identical to the Gentry-Silverberg HIBS
scheme.

Sign: Given any n ≥ 1 and a set SK = {〈Sj
tj

, Qj
1, . . . , Q

j
tj−1〉 : 1 ≤ j ≤ n} of n

private keys associated with a set ID = {IDj
tj

: 1 ≤ j ≤ n} of identifiers, and
a message M , the signer:
1. chooses a secret value sϕ ∈ Z

∗
q ;

2. computes PM = H2(ID1
t1 , . . . , ID

n
tn

, M) (where we assume the identifiers
are first placed in lexicographic order if necessary);

3. calculates

ϕ =
n∑

j=1

Sj
tj

+ sϕPM and Qϕ = sϕP0.

The algorithm outputs the signature σ = 〈ϕ, Q, Qϕ〉, where Q = {Qj
i :

1 ≤ i ≤ tj − 1, 1 ≤ j ≤ n}.

Verify: Given σ = 〈ϕ, Q, Qϕ〉, a set of identifiers ID = {ID1
t1 , . . . , ID

n
tn

} and a
message M , the verifier:
1. computes P j

i = H1(ID
j
i ) for 1 ≤ i ≤ tj and 1 ≤ j ≤ n;

2. computes PM = H2(ID1
t1 , . . . , ID

n
tn

, M) (first arranging the identifiers
lexicographically if they are not already in this order);

3. checks if e(P0, ϕ) is equal to
⎛

⎝
n∏

j=1

tj∏

i=1

e(Qj
i−1, P

j
i )

⎞

⎠ · e(Qϕ, PM ),

outputting valid if this equation holds, and invalid otherwise.

It is not hard to verify that this scheme is consistent. We remark that two
different hash functions H1 and H2 are used in the construction to make the
security proof easier to follow; a similar scheme using only one hash function is
easily constructed. However, in such a scheme we need to take care to distinguish
the different types of strings input to the hash. Even with two hash functions,
we need to assume that any input to H2 can be uniquely parsed as a list of
identifiers concatenated with a (possibly empty) message. This prevents trivial
re-encoding attacks against the scheme. This requirement can be met in a number
of ways. For example, we can assume that there is a special separating symbol
which marks the end of the identifier portion and which does not appear in any
identifier, or we can encode each identity bit id as 0id and each message bit m
as 1m. We note that this parsing requirement is not explicitly specified for the
HIBS scheme of [19], meaning that (trivially preventable) re-encoding attacks
are possible against that scheme.
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4 Security Analysis

In this section, we establish the security of the concrete multi-key HIBS scheme
of Section 3. For simplicity of presentation, we focus here on the case in which all
identifiers lie at level 1 in the hierarchy (in which case they have the root PKG as
their parent). Thus our proof is actually for the multi-key IBS scheme that arises
as a special case of our more general hierarchical scheme. We slightly extend the
techniques of [8] to directly relate this scheme’s security to the hardness of the
CDH problem in groups G equipped with a pairing. After the proof, we sketch
how our approach might be extended to handle the more general case by using
additional techniques from [19].

Theorem 2. Suppose that A is a forger against our multi-key IBS scheme that
has success probability ε. Let hash functions H1 and H2 be modeled as random
oracles. Then there is an algorithm B which solves the CDH problem in groups
G equipped with a pairing, with advantage at least

ε/(e · qH1 · qH2)

and which has running time O(time(A)). Here, qH1 is the maximum number
of H1 queries made by A during its attack, qH2 is the maximum number of H2
queries made by A, and e denotes the base of natural logarithms.

Proof: Algorithm B is given as input an admissible pairing e : G × G → GT ,
where |G| = |GT | = q, and an instance 〈P, aP, bP 〉 of the CDH problem in G,
generated by G. It will interact with algorithm A, as follows, in an attempt to
compute abP .

Setup: Algorithm B sets the system parameters of the root PKG to be
〈G, GT , e, P0 = P, Q0 = aP, H1, H2〉, so that the master secret is the un-
known value a. The system parameters are then forwarded to A. Here, H1
and H2 are random oracles controlled by B. Additionally, B randomly selects
c ∈ {1, . . . , qH1}, where qH1 is the maximum number of queries to H1 made
by A.

H1 queries: A can query H1 on any input ID ∈ {0, 1}∗. In responding to these
queries, B maintains a list ΛH1 containing tuples of the form 〈IDi, ri, Ri〉.
The list ΛH1 is initially empty. If ID already appears in the list ΛH1 , in
position i say, then B responds with Ri. Otherwise, B responds as follows:
1. If this is the c-th distinct query to H1, then set ID′ = ID;
2. Select r at random from Z

∗
q ;

3. If ID = ID′, then add 〈ID, r, R = bP + rP 〉 to the list ΛH1 .
4. Otherwise, add 〈ID, r, R = rP 〉 to the list ΛH1 .
5. Output R as the response to the H1 query.

Notice that the output R is always chosen uniformly in G, as required.
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H2 queries: A can query H2 on any list of identifiers ID1, . . . , IDn and any
message M . To respond to these queries, B maintains a list ΛH2 of tuples
〈(ID1

i , . . . , ID
n
i ), Mi, zi, fi, di, Ti〉. The list is initially empty, and B uses the

list to reply consistently with values Ti to A’s queries. B first queries H1
on each identifier IDj and sets ID = {ID1, . . . , IDn}. Then B responds as
follows:
1. If ID′ ∈ ID, then generate a coin f ∈ {0, 1} where Pr[f = 0] = δ for some

δ to be determined later;
(a) if f = 0, then set d = 0;
(b) otherwise select d at random from Z

∗
q ;

2. If ID′ /∈ ID, then set f = 0 and d = 0;
3. Set T = zP − d(bP ) where z is selected at random from Z

∗
q ;

4. Record 〈(ID1, . . . , IDn), M, z, f, d, T 〉 in ΛH2 ;
5. Return T to A as the output of H2.

Again, the output T is always chosen uniformly in G.

Extract queries: When algorithm A requests a private key associated with iden-
tifier ID, algorithm B responds as follows:
1. Recover the associated tuple 〈ID, r, R〉 from ΛH1 (first making a query

to H1 if necessary);
2. If ID = ID′, then B aborts;
3. Otherwise B returns r(aP ) to A.

It is easy to see that A receives a valid private key for identifier ID, provided
B does not abort.

Sign queries: Algorithm A can request a signature for any set of identifiers ID =
{ID1, . . . , IDn} and any message M . We can assume the list ID1, . . . , IDn is
ordered lexicographically.
In responding to A’s request, B performs the following steps:
1. Recover 〈(ID1, . . . , IDn), M, z, f, d, T 〉 from ΛH2 (if A has not already

queried H2 on the appropriate input, then B first makes the relevant H2
query himself);

2. If ID′ /∈ ID, then:
(a) Select sϕ at random from Z

∗
q ;

(b) Run Extract on input IDj to recover a private key Sj , for each 1 ≤
j ≤ n;

(c) Compute ϕ =
∑n

j=1 Sj + sϕT and Qϕ = sϕP ;
(d) Return 〈ϕ, Qϕ〉 to A.

3. If ID′ ∈ ID and f = 0, then abort;
4. Otherwise (when ID′ ∈ ID and f = 1, so that T = zP − d(bP )):

(a) Let IDj′
= ID′, and obtain entry 〈ID′, r′, R′〉 from ΛH1 ;

(b) Set v = d−1 mod q and, for each j �= j′, run Extract on input IDj to
recover a private key Sj.

(c) Set

ϕ =
n∑

j=1,j �=j′

Sj + r′(aP ) + vz(aP ), Qϕ = vaP ;

(d) Return 〈ϕ, Qϕ〉 to A.
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We remark that in step 4 above, B is not able to compute the private key
corresponding to identifier ID′ (which should equal abP + ar′P ), but is still
able to compute a valid signature. This can be shown from the definitions of
T and R′, which were made with the aim of causing certain cancelations to
occur in the signature computation: if B’s output is to be a valid signature,
we should have ϕ =

∑n
j=1 Sj+sϕH2(ID1, . . . , IDn, M) with sϕ = va. Indeed,

∑n
j=1 Sj + sϕH2(ID1, . . . , IDn, M)

=
∑n

j=1,j �=j′ Sj + (abP + ar′P ) + va(zP − d(bP ))
=

∑n
j=1,j �=j′ Sj + r′(aP ) + abP − vdabP + vz(aP )

= ϕ

Forgery: Eventually, algorithm A outputs a set ID∗ of n target identifiers, a
message M∗ and a pair σ∗ = 〈ϕ∗, Q∗

ϕ〉. If σ∗ is to be a valid signature then
it should satisfy the verification equation:

e(P, ϕ∗) = e(Q0,

n∑

j=1

H1(ID∗j)) · e(Q∗
ϕ, PM∗)

where the identifiers in ID∗ are, in lexicographic order, ID∗1, . . . , ID∗n, and
where

PM∗ = H2(ID∗1, . . . , ID∗n, M∗).

This ends our description of B’s interaction with A. If B does not abort,
then A’s view is identical to that in a real attack. Hence the probability that A
outputs a valid signature is at least ε, provided B does not abort.

Now let E1 be the event that A has queried H1 on every identifier ID∗j . It
is obvious from inspecting the above verification equation for A’s output that if
E1 does not occur, then A’s success probability is negligible. Because ε is non-
negligible (assuming B has not aborted), it follows that E1 does occur. Now the
probability that both ID′ ∈ ID∗ and that ID′ is not the subject of an Extract query
is at least 1/qH1 . This follows because we selected c ∈ {1, . . . , qH1} uniformly at
random and set ID′ to be the identifier in the c-th query to H1, and because at
least one identity appearing in ID∗ is not the subject of an Extract query.

Let E2 be the event that A has made an H2 query on input ID∗1, . . . , ID∗n

and M∗. If E2 does not occur, then A’s success probability is again negligible.
For otherwise, PM∗ is uniformly distributed over G and the probability that the
above verification equation holds is 1/q, which is negligible in λ, the security
parameter. Because ε is non-negligible, it follows that E2 does occur, so there is
an entry 〈(ID∗1, . . . , ID∗n), M∗, z∗, f∗, d∗, T ∗〉 in ΛH2 .

We now explain how B analyzes A’s output. If f∗ = 1 or if ID′ /∈ ID∗, then
B aborts. Otherwise, we can assume that f∗ = 0 and ID′ = ID∗j′

t for some
ID∗j′

t ∈ ID∗. Then, from the simulation of H2, we have d∗ = 0 and PM∗ =
H2(ID∗1, . . . , ID∗n, M∗) = z∗P . Then, by rearranging the verification equation
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for A’s output, we obtain:

e(P, ϕ∗) = e(Q0,
∑n

j=1 H1(ID∗j)) · e(Q∗
ϕ, PM∗)

= e(aP,
∑n

j=1 H1(ID∗j)) · e(Q∗
ϕ, z∗P )

= e(P,
∑n

j=1 aH1(ID∗j)) · e(P, z∗Q∗
ϕ)

= e(P,
∑n

j=1 aH1(ID∗j) + z∗Q∗
ϕ).

From the non-degeneracy of the pairing, we may now deduce

ϕ∗ =
n∑

j=1

aH1(ID∗j) + z∗Q∗
ϕ.

But, for j �= j′, we have aH1(ID∗j) = rj(aP ) for some value rj available in list
ΛH1 , while aH1(ID∗j′

) = r′(aP ) + abP . It is now easy to see that B can recover
abP from A’s output and its knowledge of the rj values and z∗, provided A’s
output is a valid signature. Hence, if B does not abort, then B can extract the
value abP with probability at least ε.

So it remains to calculate the probability that B does not abort. B is forced
to abort if A makes an Extract query on ID′, if A makes a Sign query on a set
ID containing ID′ for which f = 0, or if the set ID∗ does not contain ID′, or if
f∗ = 1. Hence B does not abort if all of the following conditions are met:

– A does not make an Extract query on ID′;
– f = 1 in every Sign query involving ID′ made by A;
– ID′ ∈ ID∗ and f∗ = 0.

We have already seen that the probability that A does not make an Extract
query on ID′ and ID′ ∈ ID∗ is 1/qH1 . Setting δ = Pr[f = 0] = 1/qH2 , where qH2

denotes a bound on the number of queries made to H2, it is then easy to see
that B’s success probability is at least

ε · 1
qH1

(
1 − 1

qH2

)qS

· 1
qH2

where qS is the number of Sign queries involving ID′ made by A. In turn, since
qS ≤ qH2 and, for large qH2 , we have (1 − 1/qH2)qH2 ≈ 1/e where e is the base
of natural logarithms, we obtain (neglecting negligible terms) that B’s success
probability is at least

ε/(e · qH1 · qH2)

as required. This completes the proof. �

We now sketch how this proof might be extended to cope with the more com-
plicated situation of our multi-key HIBS (rather than IBS). The main idea is
to borrow the simulation techniques used in proving the security of the Gentry-
Silverberg HIBE scheme, [19, Lemma 2]. There, it is shown how to simulate H1



Multi-key Hierarchical Identity-Based Signatures 397

and Extract queries for a HIBE scheme that has the same key generation proce-
dures as our multi-key HIBS scheme, in such a way as to embed a value abP into
the private key held by some proportion of the entities, whilst allowing Extract
queries to be answered for all other entities (in the more challenging hierarchi-
cal setting). When combined with our approach to handling Sign queries, this
simulation technique should yield a security reduction for our multi-key HIBS
scheme. However, we stress that we have so far only obtained a security proof
for some special cases in the hierarchical setting using the sketched techniques.
Constructing a proof for the general case remains an open problem, and, unfor-
tunately, as with the proofs in [19], we expect that any reduction obtained using
this approach will not be very tight.

5 Reducing the Cost of Verification

In this section, we study how the complexity of the verification algorithm for
our concrete multi-key HIBS scheme can be reduced in special cases.

The main situation we consider is where all the identifiers involved in signing
are at the same level in the hierarchy and have a common parent at the level
above. This includes as a special case the situation where all identifiers are at
the first level in the hierarchy. In this case, the Sign and Verify algorithms of
multi-key HIBS scheme can be modified as follows.

Sign: Given any n ≥ 1, and a set SK of n signing keys corresponding to a set of
identifiers {ID1

t , . . . , ID
n
t } having a common parent, and a message M , the

signer:
1. chooses a secret value sϕ ∈ Z

∗
q ;

2. computes PM = H2(ID1
t , . . . , ID

n
t , M) (where we assume the identifiers

are first placed in lexicographic order if necessary);
3. calculates

ϕ =
n∑

j=1

Sj
t + sϕPM and Qϕ = sϕP0.

The algorithm outputs the signature σ = 〈ϕ, Q1, . . . , Qt−1, Qϕ〉. Here, we
assume (because of the common parent) that each signing key in SK involves
the same list Q1, . . . , Qt−1 of Q-values.

Verify: Given σ=〈ϕ, Q1, . . . , Qt−1, Qϕ〉, a set of identifiers ID={ID1
t , . . . , ID

n
t }

having a common parent, and a message M , the verifier:
1. computes Pi = H1(IDi) for 1 ≤ i ≤ t−1 and P j

t = H1(ID
j
t ) for 1 ≤ j ≤ n;

2. computes PM = H2(ID1
t , . . . , ID

n
t , M) (first arranging the identifiers lex-

icographically if they are not already in this order);
3. checks if e(P0, ϕ) is equal to

e

⎛

⎝Qt−1,

n∑

j=1

P j
t

⎞

⎠ · e(Qϕ, PM ) ·
(

t−1∏

i=1

e(Qi−1, Pi)

)n

,

outputting valid if this equation holds, and invalid otherwise.
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Note that the above verification algorithm requires only t + 2 pairing computa-
tions as compared to the n · t + 2 that would be needed with the unoptimised
verification algorithm of Section 3.

For n = 1, the above Sign and Verify algorithms are essentially those of
the Gentry-Silverberg HIBS scheme [19]. In the special case where we take t =
1 throughout in the above scheme, we obtain a multi-key IBS (i.e. one-level)
scheme in which only 3 pairing computations are needed during verification.

In more general situations, we can obtain a more efficient verification algo-
rithm whenever the nodes associated with the signing keys used to generate a
signature have some common ancestors and common Q-values. For then certain
pairing computations in the verification equation can be eliminated. Recall that
this equation involves a term

∏n
j=1

∏tj

i=1 e(Qj
i−1, P

j
i ). To illustrate the possibility

of eliminating pairing computations, suppose for example that all n nodes have
a single common ancestor at some level k (and therefore at all levels above level
k as well). Then the n terms e(Qj

i−1, P
j
i ), 1 ≤ j ≤ n, are in fact equal for each

value i ≤ k, and so we can replace these n ostensibly different pairings at level i
with a power of a single pairing, for each i ≤ k. Similar remarks also apply when
some (but not necessarily all) nodes share a common ancestor at some level in
the hierarchy.

6 Efficiency Comparison

To gauge the efficiency gain offered by our multi-key HIBS primitive in com-
parison to IBMS schemes, we compare the multi-key IBS scheme that arises
from our multi-key HIBS scheme in the one-level case (with an optimised veri-
fication equation) with the RSA-based Bellare-Neven IBMS scheme [6] and the
pairing-based Gentry-Ramzan IBMS scheme [18]. The computational costs for
these schemes are shown in Table 1.

From Table 1, it is evident that our multi-key IBS scheme is much more ef-
ficient than both the Bellare-Neven and the Gentry-Ramzan IBMS schemes in
terms of signing cost at an equivalent security level. Suppose our scheme and
the Gentry-Ramzan IBMS scheme are instantiated using pairings defined on
an elliptic curve at the 80-bit security level, while the Bellare-Neven scheme
is instantiated using a 1024-bit RSA modulus (also offering roughly 80 bits of
security). Then the main signing cost in our scheme is 2 elliptic curve point mul-
tiplications, whereas the Gentry-Ramzan IBMS scheme needs 2n. The signing
cost of the Bellare-Neven scheme is much greater for reasonable values of n, and
this is due to its interactive nature. This is as expected, since our scheme exploits
the fact that signing keys can be “aggregated” before generating a signature.

On the other hand, the verification cost for the Gentry-Ramzan scheme and
our scheme is the same. The verification cost for the Bellare-Neven scheme ap-
pears to be the least among the three schemes (since a modular exponentiation
is expected to be faster than a pairing computation).

Our signatures have the same length as in the Gentry-Ramzan scheme and
are generally shorter than signatures in the Bellare-Neven scheme, as they com-
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Table 1. Computational costs for the Bellare-Neven IBMS scheme, the Gentry-Ramzan
IBMS scheme and our multi-key IBS (one-level) scheme. Here, ADD denotes the num-
ber of elliptic curve point additions, eMUL the number of elliptic curve point multi-
plications, PAI the number of pairing computations, HASH the number of hash opera-
tions, mMUL the number of modular multiplications, and EXP the number of modular
exponentiations.

ADD eMUL PAI HASH mMUL EXP

Bellare-Neven IBMS

signing - - - n(n + 1) n2 + n − 1 2n

verification - - - n − 1 n 2

Gentry-Ramzan IBMS

signing 3n − 2 2n 0 n - -

verification n − 1 0 3 n + 1 - -

Multi-key IBS

signing n 2 0 1 - -

verification n − 1 0 3 n + 1 - -

prise of only two group elements (at around 320 bits in total), instead of the
1184 bits quoted in [6]. Note that bandwidth savings can be more critical than
computational efficiency gains in many contexts.

7 Conclusions and Open Problems

There exist practical applications which require users to demonstrate posses-
sion of more than a single private signing key. We developed a new primitive
called multi-key hierarchical identity-based signatures (multi-key HIBS) which
can achieve this more efficiently than with existing approaches. We showed that
our multi-key HIBS primitive can make use of a security model that is at least as
strong as, if not even stronger than, existing related security models for multi-
signature schemes and aggregate signature schemes. We also showed how the
new primitive could be efficiently instantiated in the Random Oracle Model.

Currently, our multi-key HIBS primitive is restricted to demonstrating the
possession of all the private keys in a given set. This should be compared to
threshold cryptographic schemes in which signing parties, for example, effec-
tively demonstrate knowledge of a subset of size k of a set of private keys of
size n. It will be interesting to generalise our multi-key HIBS concept to the
threshold setting. This could involve multiple hierarchies with different roots,
or potentially, a single hierarchy, but working with a threshold of private keys
within that hierarchy.

Naturally, there exists a version of our multi-key HIBS primitive in the nor-
mal public-key setting. It seems easy to design a one-level non-identity-based
multi-key scheme by adapting the BGLS aggregate signature scheme [9], for
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example. Nevertheless, it will be interesting to explore security models and con-
crete schemes that support hierarchical signing keys in that setting. It seems
likely that it will be possible to adapt the Bellare-Neven IBMS scheme to pro-
duce a more efficient RSA-based multi-key IBS. However, finding an efficient,
RSA-based, multi-key HIBS may be a more challenging task.

It may also be interesting to try to construct a multi-key HIBS scheme secure
in the standard model, perhaps by adapting the work of Lu et al. [25].
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Abstract. Universal Designated-Verifier Signatures (UDVS) are pro-
posed to protect the privacy of a signature holder. Since UDVS schemes
reduce to standard signatures when no verifier designation is performed,
from the perspective of a signer, it is natural to ask if a UDVS can
be constructed from widely used standardized-signatures so that the ex-
isting public key infrastructures for these schemes can be used with-
out modification. Additionally, if designated-verifiers already have their
own private/public key-pairs (which may be of a different type from
the signer’s), then, for the convenience of designated-verifiers, it is also
natural to ask if designated-verifiers can use their own private keys to
verify designated signatures instead of using a new key compatible with
the UDVS system. In this paper, we address these problems and pro-
pose a new UDVS scheme. In our scheme, the signature is generated
by a signer using DSA/ECDSA, and the designated-signature can be
verified using the original private key (RSA-based or DL-based) of the
designated-verifier instead of using a new key. We call this new property
verifier-key-flexible. The security of the scheme is proved in the random
oracle model.

Keywords: ECDSA, random oracle, universal designated-verifier sig-
nature, verifier-key-flexible.

1 Introduction

There are many ways for a signer to protect his own privacy in the electronic
world. One such example is an undeniable signature introduced by Chaum and
van Antwerpen [7]; this is a kind of digital signature which has the appealing
property of the signature not being able to be verified unless there is an inter-
action with the signer; the signature cannot be denied if the signer has actually
generated the signature. Some other examples are: designated confirmer signa-
tures [6], limited verifier signatures [2], and designated verifier signatures [10].
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In particular, a designated verifier signature, introduced by Jakobsson et al ., is
designed to allow a signer to prove the validity of a signature to a specific verifier
in such a way that the verifier can only check the validity of the signature, but
he cannot transfer this conviction to a third party. On the other hand, if the
document to be signed is a certificate for a user, for example, a diploma of a
graduate, a health insurance card, or a transcript of some academic certificates,
then privacy issues concerning the holder of a signature instead of the signer need
to be taken into consideration. To protect a signature holder’s privacy, Steinfeld
et al . in 2003 firstly defined and proposed an extension of designated-verifier
signatures called universal designated-verifier signatures (UDVS) [14].

A UDVS allows any holder of a signature to designate the signature to any
desired designated-verifier such that the designated-verifier can only verify the
correctness of the signature but cannot convince any third party of this fact.
This property is useful for preventing the abuse or dissemination of personal
information contained in the certificate, thus protecting the privacy of the cer-
tificate holder. An appealing feature of a UDVS scheme is the convenience for
signers (e.g. the certificate issuer CA) who sign using a standard digital signa-
ture. Following Steinfeld et al .’s pioneer work, many new UDVS schemes and
improvements have been proposed (eg. [3,15,18,19]).

Motivation: It was pointed out by Baek et al. [3] that one inconvenience of
previously known UDVSs is that they require the designated-verifier to create
a public key using the signer’s public key parameters. In addition, the public
key must be certified via the Verifier Key-Registration Protocol in order to en-
sure that the resulting public key is compatible with the setting that the signer
provided as well as to ensure that the designated-verifier knows the private key
corresponding to his public key. But, in some situations, to enforce the protocol
for conducting such a task (i.e., verifier key generation and key registration) to be
a sub-protocol of UDVSs may be unrealistic. For, example, when proving knowl-
edge of a signature obtained from the original signer is only in the designator’s
interest, the verifier may not be willing to go through such a key-setup process.
In addition, if a verifier already has a private/public key pair (which may be of
a different type to the signer’s), he may not be willing to generate a new key
just for the purpose of verifying a designated-signature. This is because that the
unrealistic key setup involving management of Public Key Infrastructure (PKI)
may incur significant cost from the view of the verifier.

Baek et al .’s scheme [3] solves this problem by employing an interactive proof
between the holder of a signature and the designated-verifier. However, from
the perspective of the designated-verifier, a question that directly arises from
this model is whether the designated-verification processes can be done non-
interactively and using existing public keys instead of new keys.

Except for the schemes proposed by Steinfeld et al . [15], which are based on
Schnorr/RSA signatures, most previously known UDVSs are constructed from
bilinear pairings1. However, since UDVS schemes reduce to standard signatures

1 For more details about bilinear pairings, see for example [4,5].
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when no verifier designation is performed, from the perspective of a signer it is
natural to ask if a UDVS can be constructed from some widely used standardized
signatures such as DSA [11] or ECDSA [16]. This will allow UDVS functionality
to be added to (widely used) standardized signatures and the existing public key
infrastructure (PKI) for these signatures can be used without modification.

Our Contributions: We propose a new UDVS scheme which can solve the
above mentioned problems at the same time. The new scheme, called Verifier-
Key-Flexible Universal Designated-Verifier Signature (VKF-UDVS), achieves
both non-interactiveness and general public keys for the designated-signatures
verification. Our scheme also allows a signer to sign a message by DSA/ECDSA
which is one of the most widely used standardized signature algorithms. We will
give concrete security proof of our scheme in the random oracle model.

Paper Organization: The rest of this paper is organized as follows: Section
2 presents the notation and computational assumptions used in the paper. In
Section 3, we define the notion of a VKF-UDVS and the security requirements.
Section 4 describes the proposed schemes and Section 5 presents the correspond-
ing security analysis. Section 6 compares the performance of the new schemes
with other existing ones and Section 7 is the conclusion of this paper.

2 Preliminaries

This section gives some notations and security assumptions required for our
construction.

2.1 Notations

By {0, 1}∗, we mean the set of all finite binary strings. Let A be a probabilistic
Turin machine (PPTM) running in polynomial time, and let x be an input for
A. We use a ← A(x) to denote the assignment to a of a random element from
the output of A on input x according to the probability distribution induced by
the internal random choices of A. For a finite set X , we use x ←R X to denote
the assignment to x of a random element from X chosen uniformly at random.
We use y ∈ X to denote that y is an element of the finite set X .

2.2 Security Assumptions

Definition 1. Discrete Logarithm (DL) Problem: Let p and q be two large
primes such that q|(p−1). Let g ∈ Z∗

p of order q and h a randomly picked element
from the subgroup 〈g〉. When given g and h, the DL problem is to find an element
x ∈ Zq such that gx ≡ h mod p.

Definition 2. Elliptic Curve Discrete Logarithm (ECDL) Problem: The
DL problem in the elliptic curve setting is defined as follows:
Let E(Fq) denote an elliptic curve E defined over a finite field Fq. Given a point
P ∈ E(Fq) of order n, and a point Q = lP where 0 ≤ l ≤ n − 1, determine l.

The DL problem as well as ECDL problem are believed to be difficult.
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3 Verifier-Key-Flexible Universal Designated-Verifier
Signature (VKF-UDVS)

In this section, we formally define the notion of VKF-UDVS and the security
requirements behind the scheme.

3.1 Formal Model

VKF-UDVS schemes involve three entities: a signer, a designator (signature
holder) and a designated-verifier. The signer uses his private key to sign a mes-
sage and transmits a signature to the designator together with the message.
The designator, after verifying the correctness of the signature, creates a trans-
formed signature (i.e. a designated-verifier signature) for a designated-verifier.
The designated-verifier verifies the validity of the transformed signature in an
non-interactive way using the public key of the original signer and his own pri-
vate/public key pair.

We formally define the model of our VKF-UDVS scheme as shown below.

Definition 3. Regardless of the verifier-key-generationprocess which is assumed
to be done outside of our scheme. A VKF-UDVS scheme consists of the following
polynomial-time algorithms:

- Signer Key Generation: A probabilistic algorithm SigKeyGen which takes
a security parameter 1λ as input, and outputs a private/public key-pair
(sks, pks) for the signer.

- Signature Generation: A probabilistic algorithm Sign which takes a
signer’s private key sks and a message m as input, and outputs a standard
signature σ on the message m. For ease of description, we call this signature
the public verifiable signature (PV-signature).

- Verification: A deterministic algorithm Verify which takes a signer’s public
key pks, a PV-signature σ and a message m as input, and outputs 1 or 0 for
accepting or rejecting the signature σ, respectively.

- Designation: A probabilistic algorithm DS which is used when the
designated-verifier has his own (RSA-based or any DL-based) private/public
key-pair (skv, pkv). DS takes a signer’s public key pks, a designated-verifier’s
public key pkv and a message m as input, and outputs a designated-verifier
signature σ̃. We call σ̃ the DV-signature.

- Designated Verification: A deterministic algorithm DVeri which takes a
signer’s public key pks, a designated-verifier’s public key pkv, a DV-signature
σ̃ and a message m as input, the algorithm outputs 1 or 0 for accepting or
rejecting the signature σ, respectively.

- Verifier Key-Registration: a protocol between a “Key Registration Au-
thority” (KRA) and a “Verifier” (VER) who wishes to register a verifier’s
public key. The algorithms KRA and VER interact by sending messages al-
ternately form one to another. At the end of the protocol, KRA outputs a
pair (pkv, Auth), where pkv is a verifier’s public key and Auth ∈ {Acc, Rej}
is a key-registration authorization decision.
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The purpose of the Verifier Key-Registration Protocol is to ensure that the
verifier knows the private key which corresponds to his public key; this enforces
the non-transferability privacy property. In VKF-UDVS, we omit this protocol
and simply assume that designated-verifiers’ key-pairs are generated by trusted
KGCs. The validity of the keys are guaranteed by the trusted KGCs or by the
certificates.

3.2 Security Requirements

We describe the security requirements of a UDVS scheme, unforgeability and
non-transferability, in this section.

Unforgeability. In a UDVS scheme, there are two types of unforgeability
properties to consider: PV-signature unforgeability (PV-unforgeability) and DV-
signature unforgeability (DV-unforgeability).

PV-unforgeability is just the usual Existential Unforgeability notion under
Adaptive Chosen Message Attack (EUF-ACMA) [8] for the standard PV-signature
scheme induced by the UDVS scheme, which is defined as follows:

Definition 4. A signature scheme is said to be EUF-ACMA secure, if for any
polynomial-time adversary F , the advantage defined by

AdvEUF−ACMA
F

�
= Pr

[
Verify(pk, m∗, σ∗) = 1

∣
∣
∣
∣
(sk, pk) ← KeyGen(1k)
(m∗, σ∗) ← FOS(pk)

]

is less than 1
λc for sufficiently large λ and some constant c. Here OS is the

signing oracle that F can access. The probability is taken over the coin tosses of
the algorithms, of the oracles, and of the forger.

PV-unforgeability prevents attacks intended to impersonate the signer. In con-
trast, DV-unforgeability prevents attacks to fool the designated-verifier, possibly
mounted by a dishonest designator. As defined by Steinfeld et al . [14], DV-
unforgeability means that it is difficult for an attacker to forge a DV-signature
σ̃∗ by the signer on a new message m∗, such that the pair (m∗, σ̃∗) passes the
DV-verification test with respect to a designated-verifier’s and signer’s public
key.

We define the DV-unforgeability of our VKF-UDVS via the following game.
This game is executed between a challenger C and an adaptively chosen message
adversary F .

Definition 5. Let UDVS = (SigKeyGen,Sign,Verify,DS ,DVeri) be a VKF-
UDVS scheme. Let G be a key-generation algorithm outside of our scheme
and the private/public key-pair for the designated-verifier DV is generated as
(skv, pkv) ← G(1k).

– Setup: The challenger C runs SigKeyGen to generate the signer’s private/
public key-pair (sks, pks). C gives the public keys pks and pkv to F and
allows F to run.
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– Query: F can adaptively issues qh times random oracle queries (H Query),
qs times signing queries (Sign Query), and qd times designation queries (DS
Query):

• H Query: For each random oracle query on a message m ∈ {0, 1}∗, C
responds with a random element H(m) ∈ {0, · · · , p − 1}. (m, H(m)) is
then added to a List HList in order to avoid a collision. HList is assumed
to be initially empty.

• Sign Query: For any signing query asked by F on a message m under
the public key pks, C runs the Sign algorithm and returns the output σ
to F . C then adds the message/signature (m, σ) to a List SignList which
is assumed to be initially empty.

• DS Query: For any DS query asked by F on a message m under the
public keys (pks, pkv), C first checks if (m, σ) ∈ SignList or not. If not,
then C first runs the Sign algorithm to obtain the PV-signature as σ ←
Sign(sks, m) and adds (m, σ) to the SignList. C then runs DS algorithm
to obtain the DV-signature as σ̃ ← DV (pks, pkv, σ, m). C returns σ̃ to
F as the reply and add (m, σ̃) to a List, DVList, which is assumed to be
initially empty.

– Forge: F outputs a forgery (m∗, σ̃∗).

We say F wins the game if: DV eri(pks, pkv, σ̃
∗, m∗) = 1, and m∗ /∈ SignList.

Definition 6. A VKF-UDVS scheme provides DV-unforgeability against adap-
tive chosen message attack if, for any PPT forging algorithm F that plays the
above game, F wins the above game with probability at most 1

λc for sufficiently
large λ and some constant c. The probability is taken over the coin flips the
algorithms, of the oracles, and of the forger.

Non-transferability. Informally, non-transferability of UDVS means that only
the designated verifier can be convinced by the UDVS, and, from using the DV-
signature and the message m, he cannot produce evidence to convince a third
party that the message was signed by the signer, even if he reveals his private
key.

Definition 7. Let UDVS = (SigKeyGen,Sign,Verify,DS ,DVeri) be a VKF-
UDVS scheme and G be a key-generation algorithm outside of our scheme, as
defined in Definition 5. In addition, a new algorithm DS is required in this
simulation. DS is a probabilistic algorithm which, on input a signer’s public
key pks, a designated-verifier’s private key skv and a message m, outputs a
(simulated) designated verifier signature σDS ← DS(pks, skv, m).

C gives all the public keys pkv and pks to A and allows A to run.

– Phase 1: At any time, A can ask for a Sign Query, and a DS Query as
defined in Definition 5.

– Challenge: The above queries can be executed in polynomially many num-
ber of times. After enough executions, A submits (m∗, pks, pk∗

v) to the chal-
lenger C as the challenge with the constraints that the signing query on
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(m∗, pks) has not been asked and the DS query on (m∗, pks, pk∗
v) has not

been asked during Phase 1. As response for the challenge, C flips a fair coin
and obtains a bit b ∈ {0, 1}. if b = 0, S runs the DS algorithm and returns
a DV-signature σ̃ to A. Otherwise, runs DS and returns σDS to A.

– Phase 2: Phase 1 is repeated in polynomial number of times with the same
constraints as those in the Challenge Phase.

– Guess: Finally, A outputs a bit b′ ∈ {0, 1}.

We say the adversary A wins the game if b = b′.

Definition 8. A VKF-UDVS scheme provides unconditionally non- transfer-
ability if, for any adversary A playing the above game, A wins the game with
probability at most 1/2 + 1

λc for sufficiently large λ and some constant c.. The
probability is taken over the coin flips of the algorithms and of the oracles.

4 Proposed VKF-UDVS

In our scheme, a designated-verifier is denoted by DVRSA if he has a RSA-based
private/public key-pair and by DVDL if he has a DL-based private/public key-
pair. For DVRSA, his private key is d̄ and public key is (ē, N̄ , HRSA) where N̄ is a
product of two large prime numbers, ēd̄ ≡ 1 mod φ(N̄) and HRSA : {0, 1}∗ → ZN̄

is a one-way hash function. For DVDL, his public key is (p̄, q̄, ḡ, ȳ, HDL) and
private key is x̄ ∈ Zq̄, where p̄, q̄ are prime, q̄|(p̄ − 1), ḡ ∈ Z

∗
p̄ of order q̄ and

ȳ = ḡx̄ mod p̄. HDL : {0, 1}∗ → Zq̄ is a one-way hash function. We assume that
all of these are done outside of our scheme.

Signer Key Generation: (Identical to ECDSA). A signer launches an ECDSA-
Setup Algorithm ECDSASet on input a security parameter 1λ and sets up the
following parameters:

– q: a large prime greater than 2160.
– E(Fq): an elliptic curve defined over the finite field Fq.
– G: a point on E(Fq) such that the ECDL problem in the subgroup 〈G〉

generated by G is infeasible.
– p: the prime order of G.
– H : {0, 1}∗ → {0, · · · , p − 1}: a one way hash function.
– ds ←R {1, · · · , p − 1}.
– Qs = dsG.

The signer sets the public key as pk = (q, E(Fq), G, 〈G〉, p, H, Qs) and the private
key as ds.

Signature Generation: (Identical to ECDSA). To sign a message m ∈ {0, 1}∗,
the signer with private key ds does the following steps:

1. Pick k ∈ {0, · · · , p − 1} randomly.
2. Compute kG = (x, y) and r = x mod p, if r = 0 then go to step 1.
3. Compute s = (H(m) + dsr)/k mod p, if s = 0 then go to step 1.
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The signature on m is σ = (r, s). The signer then sends σ to a receiver (i.e.,
designator) R.

Verification: To verify σ, R does the following steps:

– e1 = H(m)/s mod p and e2 = r/s mod p.
– ζ = (x, y) = e1G + e2Qs.
– Accept σ if and only if x mod p = r.

Designation: To designate the signature σ, R first picks a random number
h ∈ {1, · · · , p − 1}, he then computes t = s/h mod p and T = hζ where ζ is
generated at the verification phase. Then, if the designated-verifier is DVRSA,
R (using both the public keys of the signer and the designer verifier) carries out
the following steps:

– Pick α ∈ {0, · · · , p−1} randomly, and compute a1 =αζ and c2 = HRSA(m, T,
ē, a1).

– Pick μ2 ∈ ZN̄ and compute a2 = c2 + μē
2 mod N̄ and c1 = H(m, T, ē, a2).

– Compute μ1 = α − hc1 mod p.

If the designated-verifier is DVDL, R first computes α and a1 in the same way
as in the above steps. Then, using both the public keys of the signer and the
designer verifier, R carries out the following steps:

– Compute c2 = HDL(m, T, ȳ, a1).
– Pick μ2 ∈ Zq̄ and compute a2 = ḡμ2 ȳc2 mod p̄ and c1 = H(m, T, ȳ, a2).
– Compute μ1 = α − hc1 mod p.

For DVRSA or DVDL, the designated signature on m is σ̃ = (ζ, t, c1, μ1, μ2).

Designated Verification: A designated-verifier first computes r = x mod p
from ζ = (x, y), then, using t to compute e′1 = H(m)/t mod p, e′2 = r/t mod p,
and T = e′1G + e′2Qs. Furthermore,

– for DVRSA, he computes â1 = μ1ζ + c1T , ĉ2 = HRSA(m, T, ē, â1), â2 =
ĉ2 + μē

2 mod N̄ , ĉ1 = H(m, T, ē, â2).
– for DVDL, he computes â1 = μ1ζ + c1T , ĉ2 = HDL(m, T, ē, â1) in the same

way as in the above steps. Then he computes â2 = ḡμ2 ȳĉ2 mod p̄ and ĉ1 =
H(m, T, ȳ, â2).

A designated-verifier DVRSA or DVDL accepts the signature σ̃ if and only
if ĉ1 = c1 ∈ σ̃.

Discussion. In the above scheme, the DV-signature is σ̃ = (ζ, t, c1, μ1, μ2) where
ζ is a point on the elliptic curve E(Fq) defined over Fq and the others (except
μ2) are elements in {0, · · · , p−1}. If the designated-verifier DVi has a DL-based
key-pair (keyDL for short), then μ2 ∈ Zq̄. Each of them is about 160 bit-length
so the total size of the DV-signature is about 800-bit in this case. If DVi has a
RSA-based key-pair (keyRSA), then μ2 ∈ ZN̄ with |N̄ | = 1024; so the size of a
DV-signature is about 1664-bit (i.e., 1024 + 160 × 4).
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Since ECDSA is the elliptic analogue of DSA, the above technique can also
be used on DSA so as to add a UDVS functionality as an optional feature for
DSA users. But, when using DSA as a basic scheme, ζ in a DV-signature will
have size of 1024-bit since ζ ∈ Zp with |p| = 1024. So the size of a DV-signature
will become 1664-bit if keyDL and 2528-bit if keyRSA, which is about twice the
size of the (ECDSA-based) DV-signature.

Steinfeld et al . [15] proposed UDVSs based on Schnorr signatures [13] and
RSA signatures. Although the security assumption of Schnorr signatures and
ECDSA are both based on the DL-problem, in practice, one may prefer to use
an ECDSA as a basic scheme instead of using a Schnorr signature. This is because
ECDSA is widely used and has been accepted as an ISO standard (ISO 14888-3),
an ANSI standard (ANSI X9.62), an IEEE standard (IEEE P1363) and a FIPS
standard (FIPS 186-2). In addition, because an ECDSA is more complicated
than a Schnorr signature, it is more difficult to construct a UDVS based on
ECDSA instead of on Schnorr signatures. We emphasize that our idea is also
possible to use on Schnorr signatures but the idea in [15] cannot be used to
extend a ECDSA signature into a UDVS scheme.

Notice that the above protocol for Designated Verification is a protocol for
proving knowledge of h, which is the solution of the ECDL problem of T to
the basis ζ. Since t = s/h and r = x mod p, knowing h means that the desig-
nator R possesses a valid ECDSA signature (r, s). Therefore, R can convince
a designated-verifier if and only if the transformed signature passes the desig-
nated verification protocol. This kind of knowledge-proof protocols supporting
both DL-based and RSA-based key users are first proposed by Abe et al. [1].
The security is also proved in their paper in a random oracle model.

5 Security Analysis

The correctness of the PV-signature and the DV-signature is straightforward.
PV-unforgeability is based on the unforgeability of the ECDSA. Up to now,
the provable security results are still not applicable to the widely standardized
ECDSA, unless the schemes are modified so that the signer hashes both the
message and the random group element generated, rather than just the message.
Although the security of ECDSA has not been proven yet, it is widely used
in practice and is believed to be EUF-ACMA secure (see Definition 4). Until
now, no significant security flaws on ECDSA are known. Consequently, in this
section, we only consider the security concerning the DV-signature (since the
PV-signature of our scheme is a ECDSA signature).

Before considering the unforgeability of the DV-signature, we first consider
the non-transferability of the DV-signature.

Theorem 1. The DV-signature of the proposed scheme provides unconditional
non-transferability.

Proof: To prove unconditional non-transferability, we first show how a simu-
lation algorithm DS can simulate an output of a valid DV-signature on the
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input (pks, skv, m) without the knowledge of the signer’s private key. In the fol-
lowing simulation, by (skv, pkv) ∈ KEYDL, we mean the designated-verifier’s
key-pair is a DL-based key and by (skv, pkv) ∈ KEYRSA, we mean the key-
pair is a RSA-based key. As described in Section 4, if (skv, pkv) ∈ KEYDL,
then pkv = (p̄, q̄, ḡ, ȳ, HDL) and skv = x̄ ∈ Zq̄, where p̄, q̄ are prime, q̄|(p̄ − 1),
ḡ ∈ Z

∗
p̄ of order q̄ and ȳ = ḡx̄ mod p̄. If (skv, pkv) ∈ KEYRSA, then skv = d̄ and

pkv = (ē, N̄ , HRSA), where N̄ is a product of two equal-length prime numbers
and ēd̄ ≡ 1 mod φ(N̄).

Case (1). (skv, pkv) ∈ KEYDL: To simulate a DV-signature on a message m
signed under the signer’s private key sks = ds corresponding to the public key
pks = (q, E(Fq), G, 〈G〉, p, H, Qs) and the designated-verifier’s public key pkv =
(p̄, q̄, ḡ, ȳ, HDL) corresponding to the private key skv = x̄, DS does the following
steps:

– Pick ζ ∈ 〈G〉 and t ∈ {1, · · · , p − 1} randomly.
– Using ζ, t, compute T (∈ 〈G〉). This is done in the same way described in

the Designated Verification Phase of the proposed scheme.
– Select k̄ ∈ Zq̄ randomly and compute a2 = ḡk̄ mod p̄ and c1 = H(m, T, ȳ, a2).
– Pick μ1 ∈ {0, · · · , p − 1} randomly, compute a1 = μ1ζ + c1T and c2 =

HDL(m, T, ȳ, a1).
– Compute μ2 = k̄ − x̄c2 mod q̄.

The simulated DV-signature is (ζ, t, c1, μ1, μ2).

Case (2). (skv, pkv) ∈ KEYRSA: To simulate a DV-signature on a message
m signed under the signer’s private key sks = ds corresponding to the public
key pks = (q, E(Fq), G, 〈G〉, p, H, Qs) and the designated-verifier’s public key
pkv = (ē, N̄ , HRSA) corresponding to the private key skv = d̄, DS does the
following steps:

– Pick ζ ∈ 〈G〉 and t ∈ {1, · · · , p − 1} randomly.
– Using ζ, t, compute T (∈ 〈G〉).
– Select a2 ∈ ZN̄ randomly and compute c1 = H(m, T, ȳ, a2).
– Pick μ1 ∈ {0, · · · , p − 1} randomly, compute a1 = μ1ζ + c1T and c2 =

HRSA(m, T, ȳ, a1).
– Compute μ2 = (a2 − c2)d̄ mod N̄ .

The simulated DV-signature is (ζ, t, c1, μ1, μ2).
By a straightforward computation the same as that in the Designated Verifica-
tion Phase of the proposed scheme, one can easily conclude that (ζ, t, c1, μ1, μ2)
is a valid DV-signature.

Now, we prove that a DV-signature is simulated by DS with an indistinguish-
able probability distribution. Both cases of (skv, pkv) ∈ KEYDL and (skv, pkv) ∈
KEYRSA can be analyzed in the same way, so we only consider the case of
(skv, pkv) ∈ KEYDL.

Lemma 1. Given a VKF-UDVS scheme, UDVS = (SigKeyGen, Sign, Verify,
DS, DVeri), and a simulator DS, the distributions of a DV-signature generated
by DS and a DV-signature simulated by DS are the same.
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Proof: Assume σ̃ = (ζ, t, c1, μ1, μ2) is generated by DS (for detail of signature
generation, see Section 4) and σ̃′ = (ζ′, t′, c′1, μ

′
1, μ

′
2) is generated by DS on

the same message m and under the same signer with key-pair (pks, sks) and
designated-verifier with key-pair (pkv, skv), we show the distributions of these
two signatures are the same.

First, assume L = {σ1, · · · , σl} be a set of all DV-signatures on the message
m under the signer with key-pair (pks, sks) and the designated-verifier with
key-pair (pkv, skv), we randomly pick a sequence σi = (a, b, c, d, e) ∈ L where
a ∈ 〈G〉, b ∈ {1, · · · , p − 1}, c ∈ {0, · · · , p − 1}, d ∈ {0, · · · , p − 1} and e ∈ Zq̄.
Then we compute the probability of appearance of this sequence following each
distribution of probabilities:

Prσ̃

[
(ζ, t, c1, μ1, μ2) = (a, b, c, d, e)

]

= Pr

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

ζ = a,
t = b,

μ2 = e,
c1 = c,
μ1 = d.

∣∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣

ζ = e1G + e2Qs ∈ 〈G〉,
t = s/h mod p ∈ {1, · · · , p − 1},

(h ←R {1, · · · , p − 1})
μ2 ←R Zq̄,
c1 = H(, , a2)
μ1 = α − hc1 mod p

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

=
1

q · (p − 1) · q̄ · p
.

Prσ̃′

[
(ζ′, t′, c′1, μ′

1, μ
′
2) = (a, b, c, d, e)

]

= Pr

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

ζ′ = a,
t′ = b,
c′1 = c,

μ′
1 = d,

μ′
2 = e.

∣
∣
∣
∣
∣∣
∣
∣
∣
∣
∣∣

ζ′ ←R 〈G〉,
t′ ←R {1, · · · , p − 1},
c′1 = H(, , a2),

(a2 = ḡk̄; k̄ ←R Zq̄)
μ′

1 ←R {0, · · · , p − 1}
μ′

2 = k̄ − x̄c2 mod q̄

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

=
1

q · (p − 1) · q̄ · p
.

Note that μ1 has no freedom when ζ, t, μ2 and c1 fixed, and μ′
2 has no freedom

when ζ′, t′, c′1 and μ′
1 fixed. Also note that because

c1 = H(, , a2); a2 = ḡμ2 ȳc2 ; c2 = HDL(, , a1); a1 = αζ; α ←R {0, · · · , p − 1},

so, when μ2 fixed, there are only p possible choices of c1. The case of (skv, pkv) ∈
KEYRSA can be analyzed in the same way. Therefore, whether a DV-signature
is generated by DS or by DS is probabilistically indistinguishable. �

Combining the above lemma with the proof of Theorem 1, we know that any
DV-signature can be generated by a signer or a designated-verifier with equal
probability. Therefore, we conclude that the proposed scheme is unconditional
non-transferable. This concludes the proof of Theorem 1. �

Theorem 2. The DV-signature of the proposed VKF-UDVS scheme is EUF-
ACMA secure under the assumptions that the ECDSA is EUF-ACMA secure
and the DL/ECDL Problem is hard.
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Proof: Since both cases when a designated-verifier is DVDL or DLRSA can
be proved in a similar way, we only consider the case when the designated-
verifier is DVDL with a DL-based key-pair. Suppose there exists an adversary B
which can break the EUF-ACMA security of the DV-signature of the proposed
scheme, then, using B as a black-box, there exists another adversary A which can
either break the EUF-ACMA security of ECDSA or break the discrete logarithm
problem.

First, a challenger C runs the signer-key-generation algorithm SignKeyGen to
generate a signer’s private/public key-pair (sks, pks) = (ds, Qs) of an ECDSA
system. In addition, C generates (p̄, q̄, ḡ, ȳ) where p̄, q̄ are two large primes such
that q̄|(p̄−1), ḡ ∈ Z

∗
p̄ is an element in Z

∗
p̄ of order q̄, and ȳ is an random element

picked from 〈ḡ〉. Note that (p̄, q̄, ḡ, ȳ) are independent of (sks, pks), the key-pair
of an ECDSA system. C then gives the public key pks of an ECDSA system and
the discrete logarithm problem (p̄, q̄, ḡ, ȳ) to A.

A is possible to access to the random oracle H and the signing oracle SQ of
the ECDSA system. The purpose of A is either to forge an ECDSA signature cor-
responding to the public key pks or to find logȳ

ḡ , the solution to the DL-problem
of ȳ to the basis ḡ. Note that both challenges (i.e., to forge an ECDSA signature
and to break the DL-problem) are independent and solving one challenge does
not help A to solve the other challenge. We say A succeeds if it can solve either
one of the challenges.

In order to solve the challenges given by C, A utilizes B as a black-box. To
get the black-box B run properly, A simulates the environments of the proposed
VKF-UDVS scheme and the random oracles that corresponds to the hash func-
tions H, HDL, the signing oracle SQ and the designation oracle DSQ which can
be accessed by B.

– Environment Setting: A sets pkv = (p̄, q̄, ḡ, ȳ, HDL) as the designated-
verifier’s public key, where HDL is a hash function simulated by A. A then
gives the public key pkv together with the signer’s public key pks to B and
allows B to run.

– Query: B is allowed to ask the following queries in polynomial number of
times:

• HDL Query: For each HDL Query on input of the form (mi, Ti, ȳ, a(1,i)),
A picks a random number ci ∈ Z

∗
q̄ and responds with ci to B as the

answer. To avoid collision, that is, to make sure that each different query
(with different input) has different answer, A records (ci, mi, Ti, ȳ, a(1,i))
to a HDL-List which is initially empty.

• H Query: According to the proposal, the H oracle can be queried in
two types: (1) to query on input of a message mi (2) to query on input
of the form (mi, Ti, ȳ, a(2,i)). To avoid confusion, we may consider these
two queries are different. We split the H query into two parts: H1 query
on input mi, and H2 query on input (mi, Ti, ȳ, a(2,i)). For each H1 query
on a message mi ∈ {0, 1}∗, A just queries to random oracle HQ of itself
and forwards the answer (denoted by H(mi)) form HQ to B. For each
H2 query on input of the form (mi, Ti, ȳ, a(2,i)), A replies in the same
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way as that when making H1 query (i.e., ask HQ of itself and forwards
the answer (denoted by c(1,i)) from HQ to B). Although there is no dif-
ference between these two queries, we split them in two parts in order
for our security proof. In addition, since the input on H1 query (which
is any binary string) and the input on H2 query (which is a sequence
(mi, Ti, ȳ, a(2,i)) with Ti, a(2,i) ∈ 〈G〉, and ȳ ∈ Z

∗
q̄), we may further as-

sume that A always knows whether it is an H1 query or an H2 query.
A then records (mi, H(mi)) to the H1-List and (mi, Ti, ȳ, a(2,i), c(1,i)) to
the H2-List which are initially empty.

• Sign Query: For each signing query on a message mi asked by B, A
asks the signing oracle SQ of itself and responds the answer σi to B.
(mi, σi) is then added to a Sign-List which is initial empty.

• Designated (DS) Query: For any DS query asked by B on a message
mi, A first checks its Sign-List. If (mi, σi) /∈ Sign-List, then A first
asks the signing oracle SQ of itself and records the answer (mi, σi) to
the Sign-List. A then runs a DS algorithm to obtain the DV-signature
as σ̃i ← (pks, pkv, σi). For detail computation of the DS algorithm, see
Section 3.1 and also the designation phase in Section 4. σ̃i is then the
answer to the DS-query.

– Forge the DV-signature: At the end of the simulation, B outputs a forged
DV-signature σ̃∗ = (ζ∗, t∗, c∗1, μ∗

1, μ
∗
2) on m∗. Assume B wins the game and

the forged DV-signature is valid (i.e., DV eri(pks, pkv, σ̃
∗, m∗) = 1, and m∗ /∈

Sign-List).

We need the following lemma.

Lemma 2. In a DV-signature (ζ, t, c1, μ1, μ2), the sequence (c1, μ1, μ2) is a proof
of knowledge of logT

ζ or the knowledge of the designated-verifier’s private key,
where T is publicly computable via ζ, t and the message m according to the
designated verification protocol described in Section 4. In addition, the protocol
of the knowledge proof is EUF-ACMA secure, in the random oracle model.

The above mentioned knowledge proof protocol is proposed and the EUF-ACMA
security of the protocol is proved in the random oracle model by Abe et al . in [1].

Denote Λ be the event that B wins the game and outputs a valid forgery
σ̃∗ = (ζ∗, t∗, c∗1, μ

∗
1, μ

∗
2) of the DV-signature. The event Λ can be split in 3 disjoint

sub-cases:

Λ1: B wins the game without knowing both the knowledge of h∗ = logT ∗

ζ∗ and
the designated-verifier’s private key, at the end of the game.

Λ2: B wins the game with the knowledge of h∗ = logT ∗

ζ∗ at the end of the game.
Λ3: B wins the game with the knowledge of the designated verifier’s private key

skv at the end of the game.

According to Lemma 2, we know that B cannot win the game via event Λ1
since it contradicts the EUF-ACMA unforgeability of the scheme in [1]. In other
words, if σ̃∗ = (ζ∗, t∗, c∗1, μ

∗
1, μ

∗
2) is a successful forgery on m∗ in our scheme

while B does not know the private key skv or h∗ = logT ∗

ζ∗ , then, B succeeded
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in forging a knowledge proof (c∗1, μ
∗
1, μ

∗
2) of the knowledge proof protocol in [1]

without knowing the knowledge logT ∗

ζ∗ or skv. Here T ∗ can be computed publicly
according to the designated verification protocol described in Section 4. If event
Λ1 happened, then, using the same security proof in [1], one can further use the
adversary B to solve a discrete logarithm problem.

If event Λ2 happened, then we show how to extract h∗ from B. Using h∗, A
can generate a valid forgery of ECDSA. The proof uses the forking technique [12]
which involves running the attacker B for solving our scheme twice, answering
its i∗-th H2 query differently in the two runs to obtain two distinct solutions

(c(1,i∗), μ(1,i∗)) and (c′(1,i∗), μ
′
(1,i∗)), from which the solution h∗ =

μ(1,i∗)−μ′
(1,i∗)

c′
(1,i∗)−c∗

(1,i∗)

can be recovered.
Let Θ, Ω be the random tapes given to the simulator A and the adversary B,

respectively, such that B outputs a forged DV-signature. Notice that the success
probability of B is taken over the space defined by Θ, Ω and the random oracles.
At the first run, the simulator acts in exactly the same manner as that was
described at the beginning of this proof. At the end of this run, B outputs a
successful forgery σ̃∗ = (ζ∗, t∗, c∗1, μ

∗
1, μ

∗
2) on a message m∗.

Note: The method of computing c∗1 is equivalent to querying (m∗, T ∗, ȳ, a∗
2) to

H2 (where a∗
2 is an element in Zp̄). Due to the ideal randomness of the hash

function H (with regard to the H2 queries), with probability at least 1 − 1/p,
there exists a H2 query on input (m∗, T ∗, ȳ, a∗

2) if σ̃∗ is a successful forgery.
Assume this query occurs at the i∗-th H2 query.

At the second run, with the same random tapes Θ, Ω given to the simulator
A and the adversary B, this run is almost the same as the first run except the
simulation of the H2 oracle. This time, for any j-th H2 query with j < i∗, A
responds to B with the same value as that at the first run. In other words, A
queries the random oracle HQ of itself and forwards the answer to B (Actually,
A is not necessary to query HQ again since all the queries made by B as well as
the answers from HQ in the first run has already been recorded in the H2-List,
A can just check the List and make a response). However, for any j-th H2 query
with j ≥ i∗, A picks a random number c′(1,j) ∈ {0, · · · , p − 1} and responds with
c′(1,j). There is no change to the other oracles comparing to the first run. Finally,
at the end of the second run, B outputs its forgery σ̃′ = (ζ′, t′, c′1, μ

′
1, μ

′
2) on a

message m′.
Assume B can query at most qH2 times to the H2 oracle. For i ∈ {1, · · · , qH2},

we call a run of B i-successful if B succeeds and i∗ = i. Note that if both runs of
B are i-successful for some i with regard to the H2 query, then, since the view
of B in both runs is the same up to the i-th H2 response, (m∗, T ∗, ȳ, a∗

2) (which
is the input of the i-th H2 query in the first run) must be equal to (m′, T ′, ȳ, a′

2)
(which is the input of the i-th H2 query in the second run). We first show that
when m∗ = m′, T ∗ = T ′ and a∗

2 = a′
2, then t∗ = t′ in both runs. Otherwise, A

can find the signing key of the ECDSA signer, which means A can totally break
the ECDSA (this is assumed to be impossible).
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According to the protocol, we have

T ∗ = e∗1G + e∗2Qs = H(m∗)/t∗G + r∗/t∗Qs and (1)

T ′ = e′1G + e′2Qs = H(m′)/t′G + r′/t′Qs. (2)

Since T ∗ = T ′, combine equations (1) and (2), we have

(t′H(m∗) − t∗H(m′))G = (t∗r′ − t′r∗)Qs. (3)

If t∗ 
= t′, then t′H(m∗) − t∗H(m′) 
= 0 since H(m∗) = H(m′). This implies that
t∗r′ − t′r∗ 
= 0. Therefore, in this case, A can find the signing key, sks = logQs

G ,
of the ECDSA signer:

sks = logQs

G =
t′H(m∗) − t∗H(m′)

t∗r′ − t′r∗
.

Since it is impossible if ECDSA is EUF-ACMA secure, it must be the case
that t∗ = t′. In addition, r∗ = r′ in this case.

Next, we show that ζ∗ = ζ′ in both runs. Since r∗ = x∗ mod p with (x∗, y∗) =
ζ∗ in the first run and r′ = x′ mod p with (x′, y′) = ζ′ in the second run, if
r∗ = r′, then ζ∗ = ±ζ′. On the other hand, since we give the same random tapes
Θ, Ω to A and B, respectively, in both runs, with overwhelming probability, we
are in the case of ζ∗ = ζ′ 2 if r∗ = r′.

Up to the present, we have proved that if both runs of B are i-successful with
a valid forgery (ζ∗, t∗, c∗1, μ∗

1, μ
∗
2) in the end of the first run and a valid forgery

(ζ′, t′, c′1, μ
′
1, μ

′
2) in the end of the second run, then, ζ∗ = ζ′, t∗ = t′, T ∗ = T ′

and a∗
2 = a′

2. Therefore, logT ∗

ζ∗ = h∗ = logT ′

ζ′ which means that both runs have
the same h∗. We then show that μ∗

2 = μ′
2 and c∗2 = c′2, otherwise, A can solve

the DL-problem of logȳ
ḡ given by the challenger.

According to the protocol, a∗
2 = ḡμ∗

2 ȳc∗
2 mod p̄ and a′

2 = ḡμ′
2 ȳc′

2 mod p̄. Since
a∗
2 = a′

2, we have ḡμ∗
2 ȳc∗

2 = ḡμ′
2 ȳc′

2 so

logȳ
ḡ =

μ∗
2 − μ′

2

c′2 − c∗2
,

since each μ2 and c2 can be computed publicly from the forged signatures, this
is the solution to the DL-problem given by the challenger. Therefore, if A does
not succeed in this phase, then it must be the case that μ∗

2 = μ′
2 and c∗2 = c′2.

Note that according to the protocol, c∗2 = c′2 implies a∗
1 = a′

1. In addition,
since ζ∗ = ζ′ and a∗

1 = a′
1, so α∗ = α′. Also note that c∗1 
= c′1 with probability

1 − 1/p since c′1 is randomly picked from {0, · · · , p − 1}. Consequently, μ∗
1 
= μ′

1
according to the equation: μ1 = α − hc1.

2 In the worst case when ζ∗ = −ζ′, then h∗ = −h′. In this case, it is also possible to
prove the security of the scheme. The technique is exactly the same as that when
ζ∗ = ζ′ so the detail is omitted.
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Since h∗ is the same in both runs but c∗1 
= c′1 and μ∗
1 
= μ′

1, we can extract h∗

as h∗ = μ∗
1−μ′

1
c′
1−c∗

1
.

If A can extract h∗, then, with the knowledge h∗ and (ζ = (X∗, Y ∗), t) form
the forged signature σ∗, A outputs its forgery of ECDSA signature as (r∗, s∗)
where r∗ = X∗ mod p and s∗ = h∗t∗ mod p. It is easy to see that this is a valid
ECDSA signature.

Since ECDSA is believed to be EUF-ACMA secure, we found a contradiction.
It remains to estimate the probability of the event S∗ that both runs of B are

i-successful with regard to the H2 query for some i ∈ {1, · · · , qHs}. To do this,
we split S∗ into qH2 distinct subevents S∗

i according the value of i and bound
each one. For each i, let Γi denote the outcome space for the random variable
αi = (Θ, Ω, pks, pkv, c(1,1), · · · , c(1,i−1)) consisting of the view of B up to the i-th
query to H2, and let Υi denote the outcome space for the independent random
variable βi = (c(1,i), · · · , c(1,qH2)) consisting of the view of B after the i-th query
to H2. We need the following lemma.

Lemma 3. (The Splitting Lemma):[12] Let S ⊂ Γ ×Υ such that Pr[(α, β) ∈
S] ≥ ε. For any λ < ε, define

ϕ =
{

(α, β) ∈ Γ × Υ | Pr
β′∈Υ

[(α, β′) ∈ S] ≥ ε − λ ,

then the following statements hold:

(i) Pr[ϕ] ≥ λ.
(ii) ∀(α, β) ∈ ϕ, Prβ′∈Υ [(α, β′) ∈ S] ≥ ε − λ.

Define Si be the event that a run of B is i-successful. Then, Si is a subset of Γi×Υi

with probability pi
Δ= Pr[(αi, βi) ∈ Si]. Applying the Splitting Lemma and set

λ ← pi/2, we know that there exists a subevent ϕi of Si such that Pr[(αi, βi) ∈
ϕi] ≥ pi/2 (according to (i)), and for each (α, β) ∈ ϕi, the probability that
(α, β′) ∈ Si over a random choice of β′ in ϕi is also at least pi/2 (according
to (ii). Therefore, the probability that the outcome (α, β) of the first run of
B in our algorithm is in ϕi is at least pi/2, and, for each of those outcomes,
the probability over the random choice of β′ = (c′(1,i), · · · , c′(1,qH2)) that the
second run outcome (α, β′) is in Si is at least pi − pi/2 = pi/2. Since c′1 = c′(1,i)
is uniformly chosen in {0, · · · , p − 1}, with probability 1/p it will collide with
c(1,i) = c′(1,i). Consequently, we have that (α, β) ∈ ϕi, (α, β′) ∈ Si and c(1,i) =
c′(1,i) with probability at least pi/2 · (pi/2 − 1/p) which implies that both runs
are i-successful and c(1,i) = c′(1,i). That is, the event S∗

i occurs.
Since pi is the probability that a run of B is i-successful, define AdvUDV S

B be
the probability of event Λ2 that B breaks the unforgeability of our scheme and
gains the knowledge of h∗ = logT ∗

ζ∗ . We have

AdvUDV S
B = Σ

qHs

i=1 pi and
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Pr[S∗] = Σ
qHs

i=1 Pr[S∗
i ] = Σ

qHs

i=1 pi/2 · (pi/2 − 1/p) = Σ
qHs

i=1 (p2
i /4 − pi/(2p))

≥ 1/(4qH2) · (ΣqHs

i=1 pi)2 − Σ
qHs

i=1 pi/(2p)
= 1/(4qH2) · (AdvUDV S

B )2 − AdvUDV S
B /(2p).

P r[S∗] is the success probability on A to extract h∗ where the inequality above
comes from the Cauchy-Schwartz inequality. Note that AdvUDV S

B /(2p) can be
neglect since P is large. This ends the proof of event Λ2.

If event Λ3 happened, using the security proof similar to that for proving
event Λ2 (this time, changes the output of the HDL oracle at the second run,
instead of the H2 oracle), A can extract the private key skv corresponding to
the public key pkv, which is equal to logȳ

ḡ and is the answer of the DL-problem
given by C. Since the technique is the same as that for proofing the event Λ2,
we omit the detail of this proof. �

6 Performance Comparison

In this section, we compare our VKF-UDVS scheme with most of the existing
UDVS schemes in terms of the extended signature, the verifier key flexibility
(Key-Flex), the computation cost for a designator and the computation cost
for a designated-verifier. By 1E〈G〉, we mean 1 elliptic curve multiplication on
the group 〈G〉. 1Exp means 1 exponentiation on the group Z

∗
p and 1P means 1

pairing computation. Usually, 1P is about 10 times more expensive than 1E(.).
All of these schemes are proved in the random oracle model, except ZFI05 [18]
and Verg062 [17] which are proved in the standard model.

Table 1. Performance Comparison

Extended Key- DV-Sig Cost (Designator) Cost (DVerifier)Scheme
Sign. Flex Length PV-verify Designation DV-verify

Ours-DL ECDSA Yes
5 · 160
(≈ 0.8kb) 2E〈G〉 2E〈G〉 + 2Exp̄ 4E〈G〉 + 2Exp̄

Ours-RSA ECDSA Yes
1024 + 160 · 4

(≈ 1.6kb) 2E〈G〉 2E〈G〉 + 1ExN̄ 4E〈G〉 + 1ExN̄

BNS05 [3] BLS N/A 160 + |Proof |
(≈ 0.6kb) 2P 1EG1 + 2EG2 2P + 2EG2

SPWP03 [14] BLS No 1024
(≈ 1.0kb) 2P 1P 1P + 1EG1

Verg061 [17] BLS No 2 · 160
(≈ 0.3kb) 2P 1EG1 + 1EG2 2P + 1EG1

SWP041 [15] Schnorr No 2 · 1024
(≈ 2.0kb) 2Exp 1Exp 2Exp

SWP042 [15] Schnorr No 1024 + 3 · 160
(≈ 1.5kb) 2Exp 1Exp + TH 3Exp + TH

SWP043 [15] RSA No
1024 + lF + lj+

lJ/ loge

2 � · 1024
(≈ 11.6kb)

1ExN
2(
lJ/ loge

2 �
+1)Ex. + TH

(
lJ/ loge
2 �

+1)Ex. + TH

ZFI05 [18] Variant BB No 1024 + 2 · 160
(≈ 1.3kb) 1P + 2EG2 1P + 2EG2 2P + 2EG2

Verg062 [17] BB No 3 · 160
(≈ 0.5kb) 1P + 2EG2 1EG1 + 2EG2 2P + 3EG2

In [15], TH denotes the cost of evaluating the trapdoor hash function Fpk. lJ is the bit length of J.
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We can see in Table 1 that our scheme is the only scheme providing verifier-
key-flexibility. The verifier in BNS05 does not need to have a key-pair. However
this scheme is interactive, requiring a 3-move communication for the knowledge
proof between designator and designated verifier. Our scheme is quite efficient
compared to the other schemes, especially to those schemes based on pairing-
based signatures (i.e., BLS and BB signature). The SWP04 schemes are based
on Schnorr/RSA signatures and are also very efficient, but the length of the DV-
signature is comparatively large, especially their RSA-based scheme (11.6kb). In
our scheme, when the designated-verifier has a DL-based private/public key-pair,
then the size of a DV-signature of our scheme is just 0.8kb. Also notice that our
scheme is the only scheme based on widely used standardized signatures.

7 Conclusion

This paper describes an improvement on previous UDVS schemes. We propose
a new UDVS scheme which allows more flexibility in the verifier keys and allows
using some widely used signature standards such as DSA or ECDSA as the
original signature. In our scheme, the verifier keys can be either RSA-based or
DL-based with system settings different from that of signer’s. This is the first
work on UDVS to achieve both non-interactiveness and general public keys for
the designated-signature verification.

Acknowledgement. The authors thank the anonymous referees for the con-
structive comments.
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